www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Материалы за Февраль 2016 года
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Авиационный моделизм
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно. Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамо ...

» Коробчатый воздушный змей
Коробчатый змей (рис. 4). Для его изготовления необхо­димы три основные рейки диа­метром 4,5 мм и длиной 690 мм и 12 коротких реек сечением 3X3 мм и длиной 230 мм. Ко­роткие рейки заостряют и встав­ляют на клею в основные под углом 60°. Оклеивают змей папиросной бумагой. Масса его 55—60 г.

» Использование РПСН-2 в режиме «Скорость»
Режим «Скорость» предназначен для определения путевой ско­рости самолета. Она определяется по времени движения ориенти­ра между метками дальности на экране индикатора. В РПСН-2 в режиме «Скорость» автоматически включается масштаб развертки 50 км и регулируемая задержка запуска раз­вертки в диапазоне 60—150 км. Это позволяет выбирать ориенти­ры для определения путевой скорости на достаточно б ...

» Проверка правильности остаточной радиодевиации в полете
В полетах штурман должен использовать каждую возмож­ность для проверки правильности остаточной радиодевиации. Наи­более простой и удобный способ проверки — это сравнение фактического и полученного по радиокомпасу  пеленгов радиостанции. Для этого необходимо:

» Категории и классы летающих моделей
Основным документом, ре­гламентирующим постройку авиационных летающих моде­лей, своеобразным сводом за­конов являются «Правила про­ведения соревнований по авиа­модельному спорту в СССР». В основе этих Правил — поло­жения кодекса ФАИ — техни­ческие требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены сле­дующие категории авиацион­ных моделе ...

» Модель ракеты «Пионер»
Модель ракеты «Пионер» (рис. 59) снаряжается двига­телем МРД 10-8-4. Технология ее изготовления немного отли­чается от предыдущей. Корпус клеят из плотной бумаги в два слоя   на   оправке  диаметром 55 мм. Четыре стабилизатора вырезают из пластины пено­пласта ПС-4-40 толщиной 5 мм, профилируют и оклеивают пис­чей бумагой. После высыха­ния их обрабатывают шлифо­вальной шкуркой и клеем ПВА крепят вс ...

» Моменты на головке ротора
На головке ротора при установившемся режиме полета помимо сил T, H и S будут моменты относительно осей zz u хх (оси проходят через центр втулки), так как при наличии расстояния е (фиг. 84) равнодействующая аэродинамических сил ротора не проходит через центр втулки.  

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Организация авиамодельного кружка
Кру­жок — одна из форм работы по техническому творчеству. Он объединяет школьников, интересующихся определенной областью техники. Цель заня­тий любого технического круж­ка — приобщение ребят к тру­ду, развитие их творческих способностей, формирование умений и навыков. Авиамодельный кружок объе­диняет ребят, увлеченных авиа­цией. Для многих из них авиамоделизм, это увлека­тельное и серь ...

» Курсы самолета девиация магнитных компасов
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно пр ...

» Видоизмененная поликоническая (международная) проекция
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1 : 1 000 000. Строится она по особому закону, принятому международным соглашением.

» Модель вертолета «Бел­ка»
Модель вертолета «Бел­ка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние ло­пасти закрепляют на раме, служащей одновременно фю­зеляжем. Раму изготовляют из двух липовых пластин раз­мером 220 Х 10 Х 1 мм, верх­ней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две дру­гих посредст ...

» Контроль и исправление пути при полете от радиолокатора и на радиолокатор
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осу­ществляется в следующем порядке: 1.  Запросить у диспетчера место самолета. 2.  Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм);    БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между мериди ...

» Модель самолета из пено­пласта
Модель самолета из пено­пласта (рис. 28) разработана авиамоделистами СЮТ г. Элек­тростали. За основу взят чер­теж модели самолета «Вилга-2» и полумакет чехословацких мо­делистов, изготовленный из бальзы. Строительный материал для этого микросамоле­та — пенопласт (упаковочный или ПС-4-40).

» Основные сведения о НИ-50БМ
В комплект навигационного индикатора входят следующие ос­новные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кро­ме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автомат ...

» Модель ракеты «Родник»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают ...

» Карты, применяемые в авиации - Назначение карт
В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1)   прокладки и изучения маршрута полёта; 2)   измерения путевых углов и   расстояний    между   пунктами маршрута; 3)   определения географических координат пунктов; 4)   нанесения точек расположения радиотехнических    средств, обеспечивающих полет; 5)   получения ...

» Кордовая модель самолета «Универсал»
Универсальную кордовую модель самолета (рис. 42) разработали юные техники Ти­мирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневрен­ность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пило­тажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изго ...

» Методика проведения занятий
В пионерском лагере из-за непродолжительной ра­боты кружка важное значение приобретает организация и со­держание каждого занятия. Вопросы методики проведе­ния занятий, их организацион­ная четкость во многом опре­деляются опытом руководи­теля. Большую часть руководи­телей кружков в пионерских лагерях составляют энтузи­асты технического творчества, слабым местом которых явля­ется недостаточное знани ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Автожир представляет собой летательную машину тяжелее воздуха
Автожир представляет собой летательную машину тяжелее воздуха, С точки зрения конструкции автожир можно назвать самолетом с вращаю­щейся несущей поверхностью, так как последней является авторотирующий (свободно вращающийся) винт-ротор большого диаметра и малого геометриче­ского шага, расположенный над фюзеляжем так, что ось его нормальна (или близка к нормали) оси фюзеляжа. Авторотирует винт-ротор ...

» Классификация ориентиров и их главные отличительные признаки
Визуальная ориентировка ведется по земным ориентирам. Ори­ентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем лан­дшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и то­чечные.

» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Расчет истинной и приборной воздушной скорости в уме
В полете не всегда имеется возможность рассчитать воздуш­ную скорость с помощью навигационной линейки. Поэтому необ­ходимо уметь приближенно рассчитать скорость в уме. Кроме то­го, такой расчет позволяет контролировать правильность инстру­ментальных, вычислений и тем самым предотвращать в них гру­бые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к ...

» Кордовая модель воздушного боя А. Сырятова
Модель воздушного боя, Разработанная А. Сырятовым (рис. 40), наглядное подтверж­дение тому, что пенопласт с Успехом может заменить такой традиционный материал, как бальза.Несмотря на внешнюю про­стоту — прямоугольное в пла-не крыло, вынесенный на ко­роткой балке руль высоты, модели ижевского спортсмена присущи хорошие пилотажные Качества.   Построить  ее  сможет почти каждый авиамоде­лист &m ...

» Заход на посадку по радиолокационной системе РСП
Наземная радиолокационная система посадки РСП является резервным средством для захода на посадку по приборам и при­меняется, как правило, по запросу командира корабля, а в отдель­ных случаях — по требованию диспетчера. При заходе на посадку по системе РСП экипаж обязан маневрирование при подходе к аэродрому и заходе на посадку выполнять по команде диспетчера. Маневрирование осуществляется в ...

» Выход на радиостанцию с нового заданного направления
Выход на радиостанцию аэродрома с нового заданного на­правления осуществляется только по указанию диспетчера в це­лях обеспечения безопасности полета. Выходить на новую ЛЗП приходится при заходе на посадку по кратчайшему расстоянию, на, маршруте и в учебных полетах. Применяются следующие способы выхода на новую ЛЗП: а)   с постоянным МК выхода; б)   с постоянным КУР выхода.

» Силы а моменты на роторе
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда ...

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА
Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1.  Произвести внешний осмотр  щитков управления   и   прибо­ров системы, установленных на самолете. 2.  Убедиться,   что горизонтальная   и    вертикальная    стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС   с помощью винтов с над­писью «К» и «Г» на КППМ д ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 

 Расчет пройденного расстояния, времени полета и путевой скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 25323  
 
Пройденное   расстояние определяется   по формуле
S = Wt,
где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек).
Для определения пройденного расстояния на НЛ-10М необходи­мо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 искомое расстояние в кило­метрах (рис. 4.6).

Читать дальше ..

 Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратно
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 25175  
 
Такая операция осуществляется по формулам:
V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6.
Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2.
Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индекса шкалы 2 отсчитать на шкале 1 искомое значение скорости в кило­метрах в час (рис. 4.8).

Читать дальше ..

 Перевод морских и английских миль в километры и обратно
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 15382  
 
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам:
Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.

 Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по шкале 15 кило­метры (рис. 4.9).

Читать дальше ..

 Перевод футов в метры и обратно
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 31989  
 
Футы переводятся в метры, а метры в футы по формулам:
Hм = Hфуты:3,28;
Hфуты = Нм·3,28.
Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

Читать дальше ..

 Классификация высот полета от уровня измерения
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 25458  
 
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач.
В самолетовождении в зависимости от уровня начала отсчета различают следующие высоты полета: истинную, абсолютную и барометрическую (рис. 5.1).

Читать дальше ..

 Способы измерения высоты полета
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 23322  
 
Основными способами измерения высоты полета являются ба­рометрический и радиотехнический.
Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно из­меняющегося с высотой. Барометрический высотомер представля­ет собой обыкновенный барометр, у которого вместо шкалы дав­лений поставлена шкала высот. Такой высотомер определяет вы­соту полета самолета косвенным путем, измеряя атмосферное дав­ление, которое изменяется с высотой по определенному за­кону.

Читать дальше ..

 Ошибки барометрических высотомеров
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 23294  
 
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки.
Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый высотомер имеет свои инструментальные ошибки. Они определяются путем проверки высотомера, заносятся в спе­циальную таблицу и учитываются в полете.

Читать дальше ..

 Расчет времени и места набора высоты заданного эшелона
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 23629  
 
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора.
Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна.
Определение времени и места набора высоты заданного эшелона

Рис. 5.5. Определение времени и места набора высоты заданного эшелона

Читать дальше ..

 Расчет времени и места начала снижения
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 31270  
 
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром.

Расчет времени набора высоты

Рис. 5.6. Расчет времени набора высоты
 

Читать дальше ..

 Расчет вертикальной скорости снижения или набора высоты
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 46666  
 
В практике самолетовождения бывают случаи, требующие сме­ны эшелона полета. При необходимости диспетчер указывает эки­пажу время начала и окончания смены эшелона или задает учас­ток, на котором должно быть произведено снижение. На основа­нии указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке.

Читать дальше ..

 Скорость полета - Воздушная и путевая скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 20681  
 
Знание скорости полета необходимо как для пилотирования самолета, так и для целей самолетовождения. Полет самолета на скорости ниже минимальной приводит к потере устойчивости и уп­равляемости. Увеличение скорости сверх допустимой связано с опасностью разрушения самолета. Для целей самолетовождения знание скорости полета необходимо для выполнения различных навигационных расчетов.

Читать дальше ..

 Ошибки указателя воздушной скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 14297  
 
Указатель воздушной скорости имеет инструментальные, аэро­динамические и методические ошибки.
Инструментальные ошибки ΔV возникают по тем же причинам, что и аналогичные ошибки высотомера. Они определяются путем сличения показаний указателя скорости с показания­ми точно выверенного прибора, заносятся в график или таблицу и учитываются при расчете скорости.

Читать дальше ..

 Расчет истинной воздушной скорости по показанию однострелочного указателя скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 21558  
 
Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле
Vи= Vпр+(±ΔV) + (±ΔVм),
где Vпр — приборная воздушная скорость; ΔV — инструмен­тальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на из­менение плотности воздуха.

Читать дальше ..

 Расчет приборной воздушной скорости для однострелочного указателя скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 11056  
 
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле
Vпр = Vи— (± ΔVм) — (± ΔV).

Читать дальше ..

 Расчет истинной и приборной воздушной скорости в уме
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 35525  
 
В полете не всегда имеется возможность рассчитать воздуш­ную скорость с помощью навигационной линейки. Поэтому необ­ходимо уметь приближенно рассчитать скорость в уме. Кроме то­го, такой расчет позволяет контролировать правильность инстру­ментальных, вычислений и тем самым предотвращать в них гру­бые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к указателю скорости на основ­ных высотах полета. Обычно эти поправки даются в процентах от скорости полета (табл. 6.2).

Читать дальше ..

 Расчет истинной воздушной скорости по показанию широкой стрелки комбинированного указателя скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 13731  
 
На скоростных самолетах для измерения воздушной скорости устанавливается комбинированный указатель скорости КУС-1200. Его широкая стрелка показывает приборную воздушную скорость, а узкая — приближенное значение истинной воздушной скорости.
Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле
Vи = Vпр + ( ± Δ V) + ( ±   Δ Va) +(- Δ Vсж) + ( ± ΔVм),
где Vпр — показание широкой стрелки; ΔV — инструментальная поправка указателя скорости для широкой стрелки; ΔVa — аэродинамическая поправка указателя скорости; ΔVcж — поправка на сжимаемость воздуха; ΔVм— методическая по­правка указателя скорости на изменение плотности воздуха.

Читать дальше ..

 Расчет истинной воздушной скорости по узкой стрелке КУС
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 12280  
 
Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высо­той в соответствии со стандартной атмосферой. Поэтому при тем­пературе на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скорость с некоторой погреш­ностью.

Читать дальше ..

 Расчет показания широкой стрелки КУС для заданной истинной скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9494  
 
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V).
Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

Читать дальше ..

 Учет влияния ветра на полет самолета - Ветер навигационный и метеорологический
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 46431  
 
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты.
С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На больших высо­тах, на которых выполняются полеты самолетов с ГТД, скорость ветра может достигать 200— 300 км/ч и более. Такие ветры глав­ным образом наблюдаются в зоне струйных течений. Отмечены слу­чаи, когда скорость ветра в таких те­чениях составляла 650—750 км/ч.

Читать дальше ..

 Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 93304  
 
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, при полете с боко­вым ветром векторы воздушной скорости, путевой скорости и ско­рости ветра образуют треугольник (рис. 7.3), который называется навигационным треугольником скоростей. Каж­дый вектор характеризуется направлением и величиной.

Читать дальше ..

Rambler's Top100
© 2009