Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_286.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337 Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338 Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339 Ракетомодельный спорт » Летательные аппараты - Авиационный моделизм и самолетовождение
www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Советы авиамоделисту » Ракетомодельный спорт
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Несложный пилотажный змей
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построи ...

» Проверка правильности остаточной радиодевиации в полете
В полетах штурман должен использовать каждую возмож­ность для проверки правильности остаточной радиодевиации. Наи­более простой и удобный способ проверки — это сравнение фактического и полученного по радиокомпасу  пеленгов радиостанции. Для этого необходимо:

» Дирижабли
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого ...

» Планирование и вертикальный спуск автожира
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

» Кордовая учебно-тренировочная модель самолета
Кордовая учебно-трениро­вочная модель (рис. 33). По­стройка именно такой модели наиболее оправдана для даль­нейшего знакомства с катего­рией кордовых моделей. Работу над моделью мож­но начать с изготовления ра­бочего чертежа.

» Наука о точном, надежном и безопасном вождении воздушных судов
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую. Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное ...

» Применение РСБН-2 в полете
Угломерно-дальномерная система может быть применена в по­лете на любом участке трассы в зоне ее действия. Используется она по плану, намеченному в период подготовки к полету. В этом плане указывается, в каком режиме необходимо использовать си­стему на том или другом участке трассы и для решения какой навигационной задачи ее следует применять. Рассмотрим методы использования системы и порядок рабо­ ...

» Навигационное использование системы «Трасса»
Система «Трасса» может быть использована в следующих ре­жимах: «ДИСС», «Память» и автономный режим работы нави­гационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а)   Перед   вылетом:  1.  Установить  на  щитке управления левый  переключатель в положение  «Выключено», а  правый  — в положение «Суша»  (при полете над водной пове ...

» Вертолет (геликоптер)
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несу­щим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без раз­бега, зависать в воздухе, ле­теть в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппа­рат ...

» Самолетовождение с использованием наземных радиолокаторов - Назначение наземных радиолокаторов и зад ...
Наземные радиолокаторы относятся к смешанным автономным радиотехническим средствам и представляют собой стационарные или передвижные приемопередающие радиотехнические устройст­ва, работающие в импульсном режиме в сантиметровом или метровом диапазоне волн. Они предназначены для контроля за движением самолетов и для решения задач самолетовож­дения. Наземные радиолокаторы с индикаторами кругового обз ...

» Авиационный моделизм
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно. Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамо ...

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Модель воздушного боя «Юниор»
Кордовая модель воздуш­ного боя «Юниор» (рис. 38) разработана под двигатель с рабочим объемом 1,5 см3. Вы­полнена она по схеме «летаю­щее крыло». Основной сило­вой элемент модели — кром­ка-лонжерон. Его выполняют следующим образом: из липы или сосны выстругивают рей­ку сечением 20x3 мм и дли­ной 750 мм, к боковым сто­ронам которой приклеивают еще три рейки сечением 10х 3 мм: с передней &mdas ...

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Поляра автожира
Для выполнения аэродинамического расчета автожира необходимо вычислить поляру всего автожира. Почти все существующие автожиры помимо основной несущей поверхности - ротора - имеют еще небольшое неподвижное крыло, расположенное под ротором. Поэтому прежде всего в нашу задачу должно войти определение поляры комбинированной несущей поверхности, состоящей из ротора и крыла; очевидно, что, имея такую по ...

» Предварительная штурманская подготовка к полету
Четкость работы экипажа в воздухе во многом зависит от качества штурманской подготовки к полету, которая проводится с целью облегчения самолетовождения и обеспечения безопасно­сти и точности выполнения полета по заданному маршруту, пре­дотвращения потери ориентировки и прибытия в пункт назначения в заданное время.

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Расчет времени и места догона впереди летящего самолета
Чтобы рассчитать время догона впереди летящего самолета, необходимо знать расстояние между самолетами, путевые скорости и время пролета самолетами контрольного ориентира. Время   догона   впереди летящего   самолета t дог =S/ W2 — W1

» Скорость воздуха относительно лопасти ротора
Рассмотрим скорость воздуха относительно элемента лопасти dr, отстоящего от оси ротора на расстоянии r; лопасть имеет угловое положение ψ и угол взмаха β. Взятый элемент кроме скоростей, имеет еще угловую скорость вращения Ω вокруг оси ротора и угловую скорость махового движения  . Относительную скорость воздуха у элемента разложим на две составляющих: на радиальную, направленную по ...

» Определение магнитного пеленга ориентира с помощью девиационного пеленгатора
Для определения МПО необходимо: 1)  установить треногу в центре площадки, где будет списывать­ся девиация; 2)   закрепить пеленгатор на треноге и установить его в горизон­тальное положение по уровню; 3)   отстопорить лимб и магнитную стрелку; 4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб; 5)   разворачивая визирную рамку и наблюдая ...

» Сравнение ротора автожира и крыла самолета
На фиг. 70 даны характеристика ротора, имеющего параметры А = 3, δ = 0,006, γ = 10, Θ = 2˚, k=1,0 и характеристика монопланного крыла, имеющего размах, равный диаметру ротора, и относительное удлинение λ = 6. Крыло имеет тот же профиль что и лопасть ротора автожира (Геттинген429),причем коэффициент подъемной силы крыла в целях сравнения отнесен к площади круга отметае ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Стремление к полету
Стремление к полету всегда влекло человека. Еще в древ­ности люди мечтали летать по­добно птицам. А они ведь не всегда при полете машут крыль­ями: кто из нас не наблюдал и другой вид их полета — пла­нирование. Раскинув крылья, птицы могут без затрат мус­кульной энергии подниматься вверх, опускаться вниз. Поняв, что для подражания машущему полету птиц челове­ку недостаточно его мускульной сил ...

» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Запуск змеев
Как было ска­зано ранее, воздушные змеи запускают на тонком, прочном шнуре-леере. Особенно внима­тельно надо отнестись к выбо­ру места запуска. Необходимым условием  полета змея является ветер. Змеи различных размеров летают приопределенной скорости  ветра. Большой и тяжелый змей нав­ряд ли удастся запустить при слабом ветре, когда уверенно может   держаться   в   воздухе змей, изображенный на рис ...

» Простейший вертолет — «муха»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

» Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и задачи, решаемые с его помощь ...
Одной из важнейших задач, выполняемых экипажем самоле­та в полете, является сохранение ориентировки. Ее решение до­стигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях ви­зуальную ориентировку не всегда можно применить, а определе­ние места самолета с помощью радиотехнич ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Ракетомодельный спорт
Строим сами летающие модели » Советы авиамоделисту  |   Просмотров: 12613  
 
В ракетомодельном спорте, также как и в авиамодельном, правила соревнований вырабатывает соответствующая меж­дународная федерация. Нацио­нальные федерации, принимая свой спортивный кодекс, стара­ются дублировать международ­ные правила — раздел «Косми­ческие модели» кодекса ФАИ. Но каждая страна вправе внес­ти какие-либо нововведения, уточнения, не изменяя при этом основополагающие требования, служащие безопасным запу­ском моделей.
Общие требования к моделям ракет таковы: число рабо­тающих ступеней — не более трех, максимальный суммарный импульс двигателей — 80 Н- с, стартовая масса — не более 500 г, для моделей-копий ка­тегории S7 — не более 750 г, максимальная масса топлива в двигателях — 125 г.
С 1989 года в нашем спор­тивном кодексе значится де­сять категорий ракетных мо­делей:
S1    — модели ракет на высо­ту полета (высотные);
S2    — модели ракет на высо­ту полета со стандартным гру­зом ФАИ (грузовые);
S3    — модели ракет на про­должительность полета с пара­шютом;
S4    — модели   планеров    с ускорителями   на   продолжи­тельность полета;
S5    — модели-копии на вы­соту полета;
S6    — модели ракет на про­должительность полета с лен­той;
S7    — модели-копии на реа­лизм полета;
S8    — модели  ракетопланов (ракетных планеров)  на про­должительность полета;
S9    — модели ракет с авторотирующим спуском;
S10 — модели ракет на про­должительность полета с «мяг­ким крылом» («Рогалло»).

Нетрудно заметить, что три категории (S4, S8 и S10) вклю­чают модели ракетопланов. На технических требованиях к ра­кетопланам каждой категории и их различиях остановимся немного позже.
Выше было сказано, что число работающих ступеней не должно  превышать  трех.  За ступень принимается часть кон­струкции модели ракеты, со­держащая один или более двигателей, которая отделяется от нее в полете. Ступенчатость определяется на момент движе­ния  на  пусковом  устройстве
Модели ракет должны вы­полняться из дерева, бумаги, разрушаемого пластика и дру­гих материалов, без существен­ных металлических частей.
Модели ракет категорий S1 S2, S3, S5, S6, S9 и S10 должны иметь минимальный диаметр корпуса 30 мм (с допуском — 0,1 мм) на длине не менее 50 % длины корпуса. А минимальная длина корпуса (а не всей мо­дели) миниатюрных ракет пе­речисленных категорий — 350 мм.
Для моделей категории S5 минимальная длина корпуса — 500 мм, минимальный диа­метр — 40 мм на длине более 32 % длины корпуса.
Все модели ракет, представ­ляемые в соревнованиях или для рекордных попыток, долж­ны иметь опознавательные зна­ки, состоящие из обозначения класса, минимум двух букв (первые буквы фамилии и име­ни участника) и двух цифр (на усмотрение конструктора). Вы­сота букв — не менее 10 мм. Например: «S3A» и «ВК-08». К тому же на наружной поверх­ности моделей должна быть зона светлого цвета размером 10X30 мм для отметки судей­ской коллегии.
Для тех, кто собирается уча- ствовать в официальных со­ревнованиях по ракетомодельному спорту, хочется акценти­ровать внимание на одном из пунктов  Правил,   регламентирующих порядок работы на старте. Ограничение времени нахождения в стартовой зоне (рабочего времени) пятью ми­нутами снижало возможности выбора пуска моделей. Но это оправдывалось вопросами тех­ники безопасности, исключало бесконтрольные запуски ракет.
С 1989 года изменился по­рядок выхода участников в стартовую зону для совершения полетов и выглядит так:
перед началом тура все участники сдают блокировоч­ные ключи пультов управления судьям стартовой зоны;
участник, решивший совер­шить запуск, сдает полетную книжку судьям и получает бло­кировочный ключ;
судьи удаляют всех из стар­тового сектора;
участник поднятием руки сигнализирует о своей готов­ности;
судья стартовой зоны си­гнализирует начальнику старта о готовности своей зоны к старту;
начальник старта объявля­ет: «Зона № ... ключ на старт» и дает трехсекундный отсчет времени в обратном порядке, который оканчивается коман­дой «Пуск».
Если в течение 10 с после команды «Пуск» модель не взлетела, начальник старта по­дает команду «Отбой». После чего участник должен сдать блокировочный ключ старшему судье зоны и получить полетную книжку. С этого момента зона считается свободной для сле­дующего старта.
Есть ограничения по числу моделей на соревнованиях. В категориях SI, S2, S3, S4, S6, S8, S9 и S10 каждый участник может заявить не более двух моделей. Для проведения до­полнительных туров в катего­риях S3, S4, S6, S8, S9 и S10 можно зарегистрировать еще по одной модели.
В категориях S5 и S7 (мо­дели-копии) регистрируется только одна модель.
Стартовые требования. На соревнованиях запуск моделей ракет осуществляется только со стартовой площадки, разби­той на зоны размером 5Х 17 м, в зависимости от числа участ­ников. Каждая зона разбива­ется на стартовый сектор — 5X12 м и сектор судей — 5X5 м. В стартовом секторе размещаются пусковые уста­новки моделей и пульты управ­ления запуском. В секторе су­дей располагаются судьи и про­ходит подготовка моделей к по­лету — зарядка двигателей и т. п.
Запуск моделей ракет осу­ществляется только со старто­вых установок, имеющих элек­трическое дистанционное за­жигание двигателей напряже­нием до 24 В с длиной прово­дящих шнуров не менее 10 м. Минимальный угол наклона на­правляющего устройства к го­ризонту — 60°, длина одношты-ревой установки от земли должна быть более 1,6 м.
Момент запуска моделей ракет определяют сами участ­ники соревнований в пределах времени, отведенного на тур. Минимальная продолжитель­ность тура — 45 мин и устанав­ливается судейской коллегией (в зависимости от погодных условий, количества участни­ков и т. д.). Старты моделей ракет могут осуществляться при видимости более 500 м, а скорость ветра не должна пре­вышать  10 м/с  (36 км/ч).
Каждому участнику предо­ставляется право совершить три зачетных полета (тура) в любой категории моделей ра­кет, кроме категории S7, где число туров — всего два. За­четным считается полет, если модель или любая ее часть после воспламенения двигате­лей покидает стартовую уста­новку, теряет с ней контакт или поднимается в воздух, за ис­ключением случаев, связанных с отказом (аварией) двигате­лей. Если потерпевшая ава­рию модель не пригодна для совершения полета, участник может зарегистрировать новую модель, а аварийную сдать в судейскую коллегию. Данное правило не распространяется на модели категорий S5 и S7, когда в случае аварии двигателей   сохраняется   стендовая оценка.
Все модели ракет условно можно разделить на три груп­пы: модели на высоту полета (категории S1 и S2); модели на продолжительность полета (категории S3, S4, S6, S8, S9 и S10); модели-копии (S5 и S7).
В свою очередь каждая ка­тегория подразделяется на классы в зависимости от до­пустимого общего импульса двигателя (двигателей) и мак­симальной стартовой массы. На сегодня насчитывается 41 класс ракетных моделей. Но не по всем этим классам проходят соревнования. К чемпионатным классам относятся: S1A, S2A, S3A, S4B, S5C, S6A, S7 и S8E. По ним организуются соревно­вания у нас в стране, проходят международные старты, чем­пионаты Европы и мира

Распечатать ..

 
Другие новости по теме:

  • Игры и соревнования
  • Категории и классы летающих моделей
  • Устройство управляемой ракеты
  • Точность посадки
  • Подведение итогов работы авиакружка


  • Rambler's Top100
    © 2009