www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Кордовые модели самолетов » Пилотажная модель «Акро­бат»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Схематическая модель са­молета
Схематическая модель са­молета (рис. 29) немного слож­нее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в нату­ральную величину). Порядок Работы может быть такой. Фюзеляж делают из прямо­слойной сосновой или липо­вой рейки длиной 800 мм, сечением 12Х 10 мм, к хвосто­вой части сечение можно уменьшить до 8X6 мм.

» Расчет показания широкой стрелки КУС для заданной истинной скорости
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V). Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

» Определение летающих моделей
Модель планера — модель летательного аппарата, не обес­печенная собственной силой тяги, у которой подъемная си­ла образуется аэродинамиче­скими силами, действующими на неподвижно закрепленные поверхности. Запускают при помощи леера не длиннее 50 м. Технические требо­вания: площадь несущей по­верхности — 32—34 дм2, мини­мальная масса — 410 г, макси­мальная удельная грузоподъ ...

» Пилотажная модель «Акро­бат»
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа. Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно корот ...

» Определение места самолета
Место самолета в полете определяется в целях контроля пути, определения навигационных элементов и восстановления поте­рянной ориентировки. С помощью радиокомпаса место самолета может быть определено по одной и двум радиостанциям. Определение места самолета по одной радиостанции двух­кратным пеленгованием и прокладкой пеленгов на карте. Для применения данного способа необходимо использовать боковые ...

» Наука о точном, надежном и безопасном вождении воздушных судов
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую. Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное ...

» Курсы самолета
Курсом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета отно­сительно меридиана. Курс самолета может бы ...

» Основные точки, линии и круги на земном шаре
Земля непрерывно вращается с запада на восток. Диаметр, во­круг которого происходит это вращение, называется осью враще­ния Земли (рис. 1.2). Эта ось пересекается с поверхностью Земли в двух точках, ко­торые называются географическими полюсами: один Се­верным (С), а другой Южным» (Ю). Северным называется тот по­люс, в котором, если смотреть на него сверху, вращение Земли на­правлено против хода ча ...

» Масштаб карты
Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местно­сти. Он показывает степень уменьшения линий на карте относи­тельно соответствующих им линий на местности. Масштаб бывает численный и линейный.

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Предварительная штурманская подготовка к полету
Четкость работы экипажа в воздухе во многом зависит от качества штурманской подготовки к полету, которая проводится с целью облегчения самолетовождения и обеспечения безопасно­сти и точности выполнения полета по заданному маршруту, пре­дотвращения потери ориентировки и прибытия в пункт назначения в заданное время.

» Компенсация радиодевиации
Радиодевиация компенсируется в следующем порядке: 1.  Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки. 2.  Снять скобу с указателя радиодевиаций.

» Моменты на головке ротора
На головке ротора при установившемся режиме полета помимо сил T, H и S будут моменты относительно осей zz u хх (оси проходят через центр втулки), так как при наличии расстояния е (фиг. 84) равнодействующая аэродинамических сил ротора не проходит через центр втулки.  

» Подготовка к выполнению и выполнение девиационных работ
При подготовке к выполнению девиационных работ необходимо: 1)   проверить состояние девиационного пеленгатора и исправ­ность его магнитной системы; 2)   выбрать площадку для девиационных работ, удаленную не менее чем на 150—200 м от стоянок самолетов, строений и линий высоковольтных передач; площадка должна быть ровной и иметь хороший обзор; 3)  измерить из центра площадки при помощи    деви ...

» Модель самолета из пено­пласта
Модель самолета из пено­пласта (рис. 28) разработана авиамоделистами СЮТ г. Элек­тростали. За основу взят чер­теж модели самолета «Вилга-2» и полумакет чехословацких мо­делистов, изготовленный из бальзы. Строительный материал для этого микросамоле­та — пенопласт (упаковочный или ПС-4-40).

» Помещение для занятий авиамоделизмом
Для работы авиамодельного кружка пионерского лагеря необходимо светлое помеще­ние — мастерская площадью 40—45 м2 для размещения 15—20 рабочих мест. Единой схемы организации мастерской не существует, все опреде­ляется возможностями пионер­лагеря. А они не такие уж и большие. Поэтому на прак­тике площадь мастерской обыч­но не превышает 30 м2. Это, конечно, несколько затрудняет рабо ...

» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Пенопласт в авиамоделиз­ме
В конструкции многих моделей, предлагаемых в этой книге, применяют пенопласт. Поэтому логичным будет пред­ложить некоторые практиче­ские советы по работе с ним. Пенопласт — вспененный полистирол нли полихлорви­нил, обладает низкой плот­ностью и большими возмож­ностями. Для изготовления авиамоделей применяют в ос­новном пенопласт марки ПС (полистирольный), ПХВ (по­лихлорвиниловый) и упаковоч­ ...

» Ошибки барометрических высотомеров
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый ...

» Безопасная высота полета и ее расчет
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от ...

» Сущность картографических проекций и их классификация
Способ изображения земной поверхности на плоскости назы­вается картографической проекцией. Существует много способов изображения земной поверхности на плоскости. Сущность любой картографической проекции состоит в том, что поверхность земного шара переносится сначала на глобус опреде­ленного размера, а затем с глобуса по намеченному способу на плоскость.

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Поправка на угол схождения меридианов
Как известно, на картах конической и поликонической проек­ций, применяемых для целей радиопеленгации, меридианы непа­раллельны между собой. Поправкой σ на схождение меридианов назы­вается угол, заключенный между северным направлением истин­ного меридиана радиостанции и северным направлением истинного меридиана самолета, перенесенного в точку радиостанции парал­лельно самому себе (рис. 12.7). ...

» Прямоугольный коробчатый змей Л. Харграва
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью. Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной ...

» Особенности самолетовождения при полетах в особых условиях - Особенности самолетовождения над горн ...
К полетам в особых условиях относятся полеты над горной местностью, в зоне грозовой деятельности, над полярными райо­нами Северного и Южного полушарий, пустынной и малоориентирной местностями, большими водными пространствами, на ма­лых высотах и ночью. Самолетовождение в особых условиях навигационной обста­новки выполняется по общим правилам с учетом некоторых осо­бенностей, знание которых являетс ...

» Метательный планер «Старт»
Метательный планер «Старт» (рис. 22)  представляет собой дальнейшее   развитие   преды­дущих моделей. У него плав­ные очертания концевых час­тей   у   крыла,   стабилизатора и Киля. Основной материал — пенопласт ПС-4-40 и клей ПВА. Основа   фюзеляжа  —   две сосновые или липовые  рейки длиной   450   мм   и   сечением 6x2 мм. Между ними вклеи­вают пластину с наибольшим сечением 10X6 мм ...

» Расчет ИПС при полете по ортодромии
При полете по ортодромии для прокладки радиопеленга на карте нужно рассчитать ИПС (рис. 23.11). Когда курс выдержи­вается относительно магнитного опорного меридиана, ИПС рас­считывается по следующей формуле: ИПС = ОМК + (± Δм.о.м) + КУР ± 180° — (± α), где σ = (λо.м — λр) sin φcp.

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Использование НИ-50БМ при обходе гроз
При обходе гроз на маршруте полета НИ-50БМ может исполь­зоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Пилотажная модель «Акро­бат»
Строим сами летающие модели » Кордовые модели самолетов  |   Просмотров: 10067  
 
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа.
Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно короткой носовой частью. Его основой  служат  две  плоские липовые боковины,  пристыко­вываемые при сборке к смон­тированным на крыле брускам моторамы. Носовую часть фю­зеляжа дооформляют верхней и нижней половинами «капо­та», выдолбленными из липы и приклеенными к мотораме, боковинам и шпангоутам. За­тем устанавливают рейки хво­стовой балки, брусок крепле­ния   шасси,   хвостовые   рееч­ные   шпангоуты   и   зашивку под   стабилизатор.   Вклеивать «полик» кабины удобнее после отладки  системы  управления. Установка же нижней обшив­ки  фюзеляжа   не   влияет  на очередность операций.
 
Пилотажная модель «Акробат»
Пилотажная модель «Акробат»
 
Рис. 35. Пилотажная модель «Акробат»:
а — чертеж; б — элементы конструкции; 1 —кок винта; 2—моторама; 3— капот; 4—передний шпан­гоут; 5—шпангоуты; 6—фонарь; 7—верхний стрингер; 8—фальшкиль; 9— хвостовая бобышка; 10— обшивка хвостовой балки; 11 — нижний стрингер; 12— бобышка крепления стойки; 13 — обте­катель; 14— стойка шасси; 15—колесо; 16—обтекатель шасси; 17 — законцовка; 18 — направляющая троса управления; 19 — передняя кромка; 20— трос управления; 21 — нервюра; 22 — отверстие для стойки шасси; 23 — качалка управления; 24 — центральная нервюра; 25 — топливный бак; 26 — кронштейн качалки; 27 ~ кронштейн привода закрылков; 28 — закрылок; 29 — стабилизатор; 30 — руль высоты; 31—обшивка центроплана; 32 — тяга привода закрылков; 33 — кабанчик закрылков; 34 — тяга руля высоты; 35 — кронштейн руля высоты
 
Крыло по конструктивной схеме напоминает плоскости моделей воздушного боя. Переднюю     кромку-лонжерон
вырезают из сосны. В корне сечение заготовки составляет 18X25 мм, к концу консоли ее уменьшают соответственно хорде в два раза. Масса такой кромки после доводки профиля довольно значитель­на— около 150 г. Однако если учесть, что фюзеляж очень .легок, а хвостовое опе­рение «легче пуха», то почему бы не вложить излишки массы в технологичную, прочную, рас­положенную близко от цент­ра тяжести кромку-лонжерон. Такой элемент даже поле­зен — он способствует увели­чению момента инерции по крену.
Необычный, слишком тон­кий профиль на первый взгляд вызывает определенные сом­нения. Однако, как показали первые же испытания, переход на упрощенную профилировку не дает каких-либо заметных ухудшений летных свойств, а тонкий" профиль обеспечил воз­можность создания гибкого крыла, дополнительно улуч­шающего характеристики мо­дели при резких эволюциях. Впрочем, гибким крыло явля­ется .только в верхнем и ниж­нем направлениях, так как на крутку консоли оказались на удивление жесткими.
Задняя кромка сделана об­легченной, в виде буквы Т. Это позволяет без прогибов выдержать натяжение обшив­ки между редко поставленны­ми нервюрами. Каркас крыла замыкают прочными сосновы­ми законцовками, связанными с передней кромкой фанер­ными врезными косынками, с задней — кромкой, подкреп­ленной    легкими    косынками.
Небольшой изгиб кромки лон­жерона образован при сбор­ке за счет стягивания хво­стовиков законцовок задней кромкой. Такой прием обес­печивает компенсацию незна­чительных неточностей уста­новки деталей по углу атаки. Нервюры, вырезанные с мини­мальными припусками, вклеи­вают в собранный силовой контур после отверждения сое­диняющего его клея. Стыки деталей усилены треугольны­ми рейками.
Сборку центроплана крыла ведут в следующем порядке: усиление задней кромки, топ­ливный бак с узлом качалки управления и тягой закрыл­ков, центральная нервюра из двух половин (верхней и ниж­ней) и полунервюра, обшивка центроплана. После оконча­ния сборки каркаса вклеивают узлы вывода тросов управ­ления. В правой консоли заде­лывается груз массой 15 г, после чего особенно тщатель­но устанавливают бруски мо­торамы и в них заклеивают винты МЗ для крепления дви­гателя.
Закрылки имеют предель­но облегченную конструкцию. Благодаря значительному су­жению и соответственно боль­шой ширине и толщине в кор­не они получаются достаточно жесткими на кручение. Для окантовки закрылков приме­няют тонкие липовые рейки. Задача окантовки — предохра­нить пенопласт от воздействия температуры при обтяжке лав­сановой пленкой и как бы раздвинуть по передней кром­ке 'закрылка обшивку. От за­вала   на   сторону   последнюю предохраняют легкие полунер­вюры, не касающиеся об­шивки.
Горизонтальное оперение по конструкции полностью по­вторяет закрылки. Обшивку центральной части стабили­затора приклеивают на полу­нервюры, концы стабилизато­ра несут небольшие килевые шайбы. Заметим, что основ­ная их функция — не улучше­ние внешнего вида пилотажной, а повышение эффектив­ности оперения, так как устра­няются концевые перетекания при значительных углах откло­нения руля.
Шасси изготовляют по ве­лосипедной схеме. Конструк­ция стойки ясна из рисунка, перо вилки несет небольшое колесо. Хвостовая часть об­текателя с «пяткой» надежно удерживает хвост модели от опускания на взлете и посаДке, а крен предотвращают лег­кие костыли на концах кон­солей.
Система управления — обычного типа. Надо упомя­нуть лишь разные длины по­водков при нейтральном поло­жении рулей. Эта разница равна 100 мм и служит для предохранения карабинов корд от сцепливания.
Обшивка всей модели — из металлизированной лавсано­вой пленки на клее БФ-2. Исключение составляет толь­ко фюзеляж. Для повышения жест-кости на кручение его обшивают кабельной бумагой средней толщины. Фальшкиль монтируют после пробных за­пусков; он служит своеобраз­ным грузом, позволяющим точно подобрать положение Центра тяжести.
Центр тяжести указан на чертеже. Возможно, потребу­ется несколько изменить его Положение, чтобы добиться Максимальной устойчивости и Управляемости. Однако надо отметить,   что  и  приведенное значение обеспечивает отлич­ное сочетание этих характери­стик при довольно переднем значении центра тяжести — около 24 % по САХ (крити­ческая центровка подобной по-лупланерной схемы соответ­ствует примерно 35 %).
Мотоустановка — серийный микродвигатель КМД-2,5 с деревянным воздушным вин­том 230Х130 мм и с баком объемом около 80—100 см3, работающим под давлением. Эта система питания надеж­на, тем более что добиться от «дизеля» хотя бы мало-мальски удовлетворительной перегазовки на фигурах не­возможно. Зато режим на всех фигурах при подаче топ­лива из бака под давле­нием надежнее, он не меня­ется по мере выработки топ­лива, да и на четких углах при выполнении фигур сни­жение оборотов не так заметно.
Основные данные «Акроба­та» таковы: размах 1500 мм, площадь крыла 28 дм2, пло­щадь стабилизатора 5 дм2, полетная масса 720 г.

Распечатать ..

 
Другие новости по теме:

  • Модель воздушного боя «Юниор»
  • Кордовая модель воздушного боя А. Сырятова
  • Кордовая учебно-тренировочная модель самолета
  • Модель конструкции авиа­моделистов из г. Барановичи
  • Кордовая модель самолета «Универсал»


  • Rambler's Top100
    © 2009