www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Кордовые модели самолетов » Кордовая модель самолета «Универсал»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Умножение и деление чисел при помощи НЛ-10М
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

» Особенности самолетовождения над безориентирной местностью
Условия самолетовождения    над    безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

» Штурманский контроль готовности экипажа к полету
Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсут­ствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету кон­тролируют штурманы авиаэскадрилий (авиаотрядов) и руководи­тель полетов. Флаг-штурман летного учебного заведения ...

» Резиномоторная модель са­молета класса В-1
Резиномоторная модель са­молета класса В-1 (рис. 31) может рассматриваться как шаг к спортивному совер­шенствованию в категории сво-боднолетающих моделей.

» Путевые углы и способы их определения
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7). Заданным  магнитным путевым   углом   ЗМПУ   называется       угол,     заключенный между северным    направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и ...

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Метательные модели плане­ров
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, наб ...

» О выборе диаметра и коэффициента заполнения ротора при проектировании автожира
Если при проектировании автожира имеются в виду его основные характерные качества, как то: крутой угол посадки и низкая мини­мальная скорость горизонтального полета без снижения, то выбор диаметра ротора нужно делать, задавшись такой нагрузкой w на единицу поверхности ометаемого диска ротора, при которой вертикальная скорость крутой посадки была бы безопасна. Величины нагрузки на ометаемую ротором ...

» Летатель­ный аппарат тяжелее воздуха
Самолет — самый распро­страненный сегодня летатель­ный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называ­ли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит рус­скому исследователю и изобре­тателю, морскому офицеру Александру Федоровичу Мо­жайскому. В 1854 году он задумал построить воздухопла­вательный аппарат, кото ...

» Змей-вертушка
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет ...

» Режимы работы, органы управления, указатели КС-6 и их назначение
В зависимости от решаемых задач и условий полета курсовая система  может  работать: 1) в   режиме гирополукомпаса   «ГПК»; 2)   в   режиме   магнитной   коррекции   «МК»; 3)   в режиме астрономической коррекции «АК».

» Особенности использования самолетной радиолокационной станции РПСН-3
Радиолокационная станция РПСН-3 выпускается в нескольких вариантах. Комплектность станции зависит от типа самолета. На самолете Ан-24 для работы с РПСН-3 установлены: пульт управ­ления, пульт контроля и один индикатор. Станция имеет семь режимов работы: «Снос», «Обзор», «Дальний обзор», «Горы — Грозы», «Изо—Эхо», «Самолеты» и «Маяк». Режим «Маяк» на всех вариантах станции не использует ...

» Расчет времени и места встречи самолета с темнотой или рассветом и определение продолжительности ноч ...
Когда полет начался днем, а заканчивается ночью или наоборот, необходимо знать, в какое время произойдет встреча самолета с темнотой или рассветом и какова продолжительность ночного по­лета. Время и место встречи самолета с темнотой или рассветом мож­но рассчитать с помощью НЛ-10М или по графику. Рассмотрим порядок такого расчета с помощью НЛ-10М.

» Курсы самолета
Курсом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета отно­сительно меридиана. Курс самолета может бы ...

» Подготовка к проведению радиодевиационных работ
Подготовка к проведению радиодевиационных работ включает: 1. Подготовку девиационного пеленгатора, бланков протоколов выполнения радиодевиационных работ и бланков графиков. 2.  Выбор для выполнения радиодевиационных работ площадки, удаленной не менее чем на 150—200 м    от    стоянок    самолетов, строений и линий высоковольтных передач.    Площадка    должна быть горизонтальной, в направле ...

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Основные сведения о НИ-50БМ
В комплект навигационного индикатора входят следующие ос­новные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кро­ме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автомат ...

» Управляемость автожира и ротор
Рассмотрим, каким образом воздействия руля глубины и элеронов передаются на ротор и переводят его плоскость вращения в нужный режим или, вернее, как при подвесных лопастях (шарнирное крепление) плоскость вращения ротора следует за фюзеляжем при наклонах последнего. Возьмем для рассмотрения 4-лопастный ротор. Предположим, что автожир нужно перевести с угла i на больший угол атаки i', для чего руле ...

» Периодическое изменение угла взмаха лопасти и угла атаки сечения лопасти
Для выяснения махового движения па разных режимах и изменении угла β по ψ а так же для выяснения влияния махового движения на истинный угол атаки α сечения по вышеприведенным формулам сделан подсчет для ротора, имеющего следующие употребительные в практике параметры: γ=10; Θ=2˚

» Силы а моменты на роторе
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда ...

» Заход на посадку по радиолокационной системе РСП
Наземная радиолокационная система посадки РСП является резервным средством для захода на посадку по приборам и при­меняется, как правило, по запросу командира корабля, а в отдель­ных случаях — по требованию диспетчера. При заходе на посадку по системе РСП экипаж обязан маневрирование при подходе к аэродрому и заходе на посадку выполнять по команде диспетчера. Маневрирование осуществляется в ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Модель вертолета «Бел­ка»
Модель вертолета «Бел­ка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние ло­пасти закрепляют на раме, служащей одновременно фю­зеляжем. Раму изготовляют из двух липовых пластин раз­мером 220 Х 10 Х 1 мм, верх­ней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две дру­гих посредст ...

» Особенности самолетовождения на малых высотах
Условия самолетовождения на малых высотах. Полетами на малых высотах называются полеты, выполняемые на высотах до 600 м над рельефом местности. Такие полеты могут быть пред­намеренными (при выполнении различных видов работ авиацией специального применения), учебными (согласно программам лет­ной подготовки) и вынужденными (по различным причинам).

» Основные радионавигационные элементы
Основными радионавигационными элементами при использо­вании радиокомпаса являются: курсовой угол радиостанции (КУР); отсчет радиокомпаса (ОРК); радиодевиация (Δр); пеленг радиостанции (ПР); пеленг самолета (ПС).

» Ошибки барометрических высотомеров
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый ...

» Определение момента пролета радиостанции или ее траверза
Полет на радиостанцию заканчивается определением момента ее пролета. Как правило, этот момент необходимо ожидать. О приближении самолета к радиостанции можно су­дить по следующим призна­кам: а)   истекает       расчетное время прибытия на РНТ; б)   увеличивается   чувст­вительность    радиокомпаса, что   сопровождается   откло­нением стрелки   индикатора настройки вправо.

» Планирование занятий авиа­кружка
Еди­ной программы для авиа­кружка пионерского лагеря не существует. Да в этом и нет необходимости. Ведь объекты практической рабо­ты, ее последовательность определяются конкретными условиями — обеспечением ма­териалами и инструментом, квалификацией руководителя и даже той местностью, где рас­положен пионерлагерь. Если кругом лес и нет возмож­ности   запускать   свободнолетающие модели, то сл ...

» Расчет истинной воздушной скорости по показанию широкой стрелки комбинированного указателя скорости
На скоростных самолетах для измерения воздушной скорости устанавливается комбинированный указатель скорости КУС-1200. Его широкая стрелка показывает приборную воздушную скорость, а узкая — приближенное значение истинной воздушной скорости. Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле Vи = Vпр + ( ± Δ V) + ( ±   Δ Va) +(- Δ Vсж) + ( ± Δ ...

» Подготовка к выполнению и выполнение девиационных работ
При подготовке к выполнению девиационных работ необходимо: 1)   проверить состояние девиационного пеленгатора и исправ­ность его магнитной системы; 2)   выбрать площадку для девиационных работ, удаленную не менее чем на 150—200 м от стоянок самолетов, строений и линий высоковольтных передач; площадка должна быть ровной и иметь хороший обзор; 3)  измерить из центра площадки при помощи    деви ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Кордовая модель самолета «Универсал»
Строим сами летающие модели » Кордовые модели самолетов  |   Просмотров: 15759  
 
Универсальную кордовую модель самолета (рис. 42) разработали юные техники Ти­мирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневрен­ность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пило­тажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изготов­ления в кружке пионерского лагеря.
Крыло модели выполняют по классической нервюрно-лон-жеронной схеме (рис. 43). Для увеличения маневренно­сти, особенно на малых ско­ростях полета, профиль вы­бран обычным, симметричным. Материалом для нервюр стал тунг, идущий на ящики из-под фруктов. Пластины строгают до толщины 2 мм, а за­тем после сборки с помощью винтов в пачки обрабатывают по профилю и облегчают. В заключение их покрывают эмалитом, что хорошо предо­храняет довольно хрупкую дре­весину тунга от растрескива­ния.
На нервюры может пойти и двухмиллиметровая фанера. Ее применение лишь немного увеличит массу модели, зато она станет прочнее.
 
Кордовая модель самолета «Универсал»

Рис. 42. Кордовая модель самолета «Универсал»:   
а—модель в сборе; б— силуэт модели в пилотажиом варианте; в — качалка управления; г — кабанчик; д — топливный бачок; 1-моторама; 2— двигатель КМд-2,5; 3—обшивка лобика; 4 — обшивка крыла; 5 — загрузка внешнего крыла (свинец массой 25 г); 6— внешняя законцовка; 7 — задняя кромка; 8. 10 — нервюры; 9— контур зализа; 11—лонжерон; 12—трос управлений; 13— внутренняя законцовка; 14— передняя кромка; 15—полунервюра; 16—стабилизатор; 17 — руль высоты; 18. 21 — силовые лонжероны; 19, 23, 25—шпангоуты; 20'—законцовка балки; 22 — тяга; 24—раскос; 26 — посадочный гребень моторамы; 27 — связки лонжеронов с законцовками; 28 — стенка лонжеронов
 
Основные узлы кордовой модели «Универсал»
 
Рис. 43. Основные узлы кордовой модели «Универсал»:
а — сборка моторамы; б — конструкция центральной части крыла; в — сборка стабилизатора и руля высоты; г — горизонтальное хвостовое оперенне из пенопласта; д — конструкция съемного шасси; е— конструкция фонаря
Однолопастный воздушный винт
 
Рис. 44. Однолопастный воздушный винт:
1—лопасть;   2— втулка;   3 — противовес;   4— шпилька;   5 — линия   обработки;   6 — контур   лопасти для пилотажной модели; 7 — контур для модели воздушного боя
 
Из тунга вырезают н полу­нервюры, поддерживающие мягкую обшивку на самом искривленном участке профи­ля. Носовую часть двух цент­ральных нервюр не облегча­ют — они несут бобышку креп­ления моторамы, а централь­ные полунервюры делают из фанеры.
Сборка крыла не представ­ляет трудностей. Ее, как и сборку всей модели, ведут на эпоксидном клее, который ком­пенсирует неточность изготов­ления отдельных деталей. Но это крайность. Нужно стре­миться, чтобы каркас крыла держался даже без клея, тог­да конструкция получится лег­кой и прочной.
Топливный бачок паяют н проверяют на герметичность перед началом монтажа эле­ментов набора. Дело в том, что его «намертво» заклеи­вают в центроплан. Все труб­ки бачка выводят через отвер­стия в фанерной обшивке лобика.
Закончив сборку крыла, можно приступать к зашивке межлонжеронного пространст­ва, установке груза и качалки. После того как обшивка лоби­ка будет подогнана по месту к набору и трубкам бачка, ее клеят. Пока клей затвер­девает, собирают мотораму. Винты крепления двигателя заклеивают в ней после сбор­ки в отверстиях с нарезанной резьбой. На выступающие кон­цы винтов монтируют двига­тель и крепят его гайками с разрезными шайбами, а головки закрывают тонкой фа­нерой. Такая система самая надежная:    топливо   никогда не просочится в древесину моторамы, она не будет сми­наться.
Выводя трубки дренажа ба­ка, их загибают навстречу потоку и обрезают на одина­ковом расстоянии от передней кромки крыла. Только тогда мотор будет работать в одном режиме при любом положении модели в воздухе и при манев­рах. Этого же можно добиться, использовав наддув бака дав­лением, отбираемым из карте­ра двигателя. В последнем слу­чае одна дренажная трубка после заправки топлива заглу­шается.
На одной из таких моделей стабилизатор был наборным. Он может показаться слож­ным, но на самом деле это один из простых вариантов, если воспользоваться следую­щей технологией. Прежде все­го контур оперения переносят с чертежа на фанеру, затем вырезают и облегчают. На этот плоский «стапель» накла­дывают набор из нескольких реек и пластин лампы... и ста­билизатор с рулем высоты готов. Изготовление кажуще­гося более простым пено­пластового варианта занимает намного больше времени, он менее прочен, но зато значи­тельно легче.
Стабилизатор устанавлива­ют на балке-фюзеляже. Она собрана из реек и имеет не­большую массу, что значи­тельно повышает маневрен­ность. Жесткость балки на кручение обеспечивает необыч­но положенная обшивка.
Собрав и пристыковав к крылу всю хвостовую часть, проводят тяги к рулю высоты.
Тонкая проволока тяги про­ходит через небольшие отвер­стия в шпангоутах, поэтому даже при заклиненном руле и одном натянутом тросе управления она не дефор­мируется. Да и усилия на ней незначительные — роговая аэродинамическая компен­сация почти полностью унич­тожает шарнирные моменты, «рога» частично обеспечивают и весовую балансировку не­привычно большого руля вы­соты.
Проверив легкость хода и одинаковость углов отклоне­ний руля, модель обтягивают. На крыло с фюзеляжем идет четыре раскроенных куска лав­сановой пленки, привариваемой к каркасу с помощью утюга на клее БФ-2, «Уникум» или Н-88. По всем кромкам де­лают подворот пленки на 5— 10 мм: образуется «замок» и обшивка не отлетит от кар­каса при самых жестких уда­рах, предохраняя и сам кар­кас.
Пленку накладывают на кромки и нервюры с носиками.
Но к двум центральным нер­вюрам крыла и шпангоутам фюзеляжа ее не приваривают, так что после проглаживания горячим утюгом лавсан натя­гивается и образует эффек­тивный зализ, страхующий фю­зеляж от круток в полете. Мотораму покрывают эмали-том или другим нитролаком. Красить саму модель или не красить, зависит от желания конструктора.
Центровка полностью уком­плектованной модели должна находиться в 60—65 мм за передней кромкой крыла. При большой площади оперения это обеспечит устойчивый го­ризонтальный полет и отлич­ную управляемость. Тем, кто не имеет достаточного опыта в пилотировании «бойцовки», можно сдвинуть центр тяжести на 15—20 мм вперед, загрузив носовую часть модели.
Модель оснащают двигате­лем КМД с серийным капро­новым винтом 248X130 мм, обрезанным до диаметра 220 мм. Но ее поведение в воздухе заметно улучшается при установке на мотор одно-лопастного винта собственно­го изготовления. Приводим чертежи пропеллера для мик­родвигателя КМД-2,5 (рис. 44). Вырезают лопасть из плот­ной древесины типа бука или граба, комель подгоняют под выточенный из стали и отфре­зерованный противовес. После лакировки на лопасти с по­мощью смолы закрепляют втулку и противовес. Когда клей затвердеет, через сталь­ную щеку и комель сверлят сквозные отверстия и в них на смоле плотно вставляют шпильки из проволоки ОВС. Готовый винт тщательнейшим образом  балансируют, стачивая противовес, поэтому лучше заготовить его с небольшими припусками. На рис. 44 он показан «чистовым».
Для модели в пилотажном варианте устанавливают шас­си, укрепляя стойки в бо­бышки на крыле, и хвостовой костыль. Облагородит модель, придаст ей самолетный вид простейший фонарь и кок винта. Для ответственных стар­тов монтируют глушитель вы­хлопа. Все эти усовершенство­вания немного сместят центр тяжести миниатюрного само­лета вперед, что улучшит его поведение в любой точке полусферы при выполнении фи­гур   пилотажного   комплекса.

Распечатать ..

 
Другие новости по теме:

  • Модель конструкции Г. Без­рука
  • Кордовая модель воздушного боя А. Сырятова
  • Кордовая учебно-тренировочная модель самолета
  • Модель воздушного боя «Юниор»
  • Модель воздушного боя


  • Rambler's Top100
    © 2009