www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Модели планеров » Метательные модели плане­ров
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Определение остаточной радиодевиации и составление графика радиодевиации
Остаточная радиодевиация определяется с целью обнаружения ошибок и неточностей, допущенных в процессе выявления и ком­пенсации радиодевиации. Для определения остаточной радиодевиации самолет последо­вательно устанавливается на 24 ОРК, на каждом ОРК определяет­ся КУР и вычисляется радиодевиация, которая записывается в протокол. Радиодевиация считается скомпенсированной, если на КУР = 0° она равна н ...

» Модель вертолета «Бел­ка»
Модель вертолета «Бел­ка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние ло­пасти закрепляют на раме, служащей одновременно фю­зеляжем. Раму изготовляют из двух липовых пластин раз­мером 220 Х 10 Х 1 мм, верх­ней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две дру­гих посредст ...

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Несложный пилотажный змей
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построи ...

» Назначение и принцип устройства навигационной линейки НЛ-10М
Навигационная линейка НЛ-10М является счетным инструмен­том пилота и штурмана и предназначена для выполнения необхо­димых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...

» Основные правила самолетовождения - Порядок выполнения маршрутного полета
Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установлен­ным маршрутам. В основе успешного выполнения полетов лежит строгое соблю­дение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1)   сохранять ориентировку в течение вс ...

» Петля Нестерова
Задача участников в этом соревнова нии — заставить модель вы­полнить петлю Нестерова Судьи, наблюдая за полетами сбоку, оценивают эту фигуру выполненную каждой моделью, в очках. Так, четкая и ровная петля, похожая на окруж ность, оценивается в 5 очков. петля с зависанием, вытянутая,— в 4 очка и т. д. Участник, набравший наибольшую сумму очков за три полета, признается победителем.

» Самолетовождение с использованием наземных радиолокаторов - Назначение наземных радиолокаторов и зад ...
Наземные радиолокаторы относятся к смешанным автономным радиотехническим средствам и представляют собой стационарные или передвижные приемопередающие радиотехнические устройст­ва, работающие в импульсном режиме в сантиметровом или метровом диапазоне волн. Они предназначены для контроля за движением самолетов и для решения задач самолетовож­дения. Наземные радиолокаторы с индикаторами кругового обз ...

» Методика проведения занятий
В пионерском лагере из-за непродолжительной ра­боты кружка важное значение приобретает организация и со­держание каждого занятия. Вопросы методики проведе­ния занятий, их организацион­ная четкость во многом опре­деляются опытом руководи­теля. Большую часть руководи­телей кружков в пионерских лагерях составляют энтузи­асты технического творчества, слабым местом которых явля­ется недостаточное знани ...

» Предотвращение случаев попаданий самолетов в районы с опасными для полетов метеоявлениями
Для предотвращения случаев попадания в районы с опас­ными для полетов метеоявлениями необходимо: 1)   перед полетом тщательно изучить метеообстановку по трас­се и прилегающим к ней районам; 2)   наметить порядок обхода опасных условий погоды; 3)   наблюдать в полете за изменением    погоды,   особенно   за развитием явлений, опасных для полетов; 4)   периодически получать по радио сведения о сос ...

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Азимутальные проекции
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проек ...

» Поправка на угол схождения меридианов
Как известно, на картах конической и поликонической проек­ций, применяемых для целей радиопеленгации, меридианы непа­раллельны между собой. Поправкой σ на схождение меридианов назы­вается угол, заключенный между северным направлением истин­ного меридиана радиостанции и северным направлением истинного меридиана самолета, перенесенного в точку радиостанции парал­лельно самому себе (рис. 12.7). ...

» Изображение ориентиров на экране индикатора
Для распознавания наблюдаемой на экране индикатора све­товой картины необходимо знать, как выглядят на экране различ­ные наземные объекты.

» Пользование указателями радиокомпаса
Указатель пилота предназначен только для отсчета КУР по шкале против стрелки указателя. Шкала оцифрована через 30°, цена одного деления раина 5°. Указатель штурмана предназначен для отсчета КУР и пелен­гов радиостанции и самолета. Для отсчета КУР необходимо: 1)   ручкой с надписью КУРС подвести нуль шкалы против не­подвижного треугольного индекса; 2)  отсчитать значение КУР по шкале   против остро ...

» Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с ...

» Определение азимута и дальности до самолета
Азимут и дальность до самолета опре­деляются диспетчером по экрану индика­тора, на котором самолет изображается в виде ярко светящейся метки. Азимут от­считывается относительно северного на­правления истинного меридиана по шка­ле индикатора, которая имеет оцифровку от 0 до 360°. Наклонная дальность до  самолета определяется на индикаторе по масштабным кольцам (рис. 16.1). Точность определения даль ...

» Основные радионавигационные элементы
Основными радионавигационными элементами при использо­вании радиокомпаса являются: курсовой угол радиостанции (КУР); отсчет радиокомпаса (ОРК); радиодевиация (Δр); пеленг радиостанции (ПР); пеленг самолета (ПС).

» Списывание радиодевиации - Причины радиодевиации и ее характер
Работа радиокомпаса основана на использовании направленной характеристики приема радиоволн рамочной антенной. С помощью такой антенны (рамки) определяется направление, с которого приходят радиоволны к самолету. Однако не всегда рамка радиоком­паса устанавливается в направлении на радиостанцию. Обычно при пеленговании наземных радиостанций рамка радиокомпаса устанавливается в направлении, которое о ...

» Скорость полета - Воздушная и путевая скорости
Знание скорости полета необходимо как для пилотирования самолета, так и для целей самолетовождения. Полет самолета на скорости ниже минимальной приводит к потере устойчивости и уп­равляемости. Увеличение скорости сверх допустимой связано с опасностью разрушения самолета. Для целей самолетовождения знание скорости полета необходимо для выполнения различных навигационных расчетов.

» Магнитные поля, действующие на картушку компаса, установленного на самолете
На картушку магнитного компаса, установленного на самолете, действуют следующие поля: 1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану); 2)  постоянное магнитное поле самолета; 3)   переменное магнитное поле самолета; 4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

» Простейший вертолет — «муха»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

» Защита для жиклера
Устанавливая ми­кродвигатели с передним рас­пределением на модели воз­душного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у мото­ров, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жик­лер. Выход из этого положения весьма прост: достаточно вы­пилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный пре­дох ...

» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Дирижабли
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого ...

» Летатель­ный аппарат тяжелее воздуха
Самолет — самый распро­страненный сегодня летатель­ный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называ­ли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит рус­скому исследователю и изобре­тателю, морскому офицеру Александру Федоровичу Мо­жайскому. В 1854 году он задумал построить воздухопла­вательный аппарат, кото ...

» Ориентирование карты по странам света
Ориентировать карту по странам света — это значит располо­жить ее так, чтобы северные направления истинных меридианов карты были направлены на север. В практике самолетовождения ориентирование карты по странам света осуществляют по компасу или земным ориентирам.

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Полет от наземного радиопеленгатора
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Метательные модели плане­ров
Строим сами летающие модели » Модели планеров  |   Просмотров: 15312  
 
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, набираемые при взлете. Метательные модели планеров отличаются и хоро­шими планирующими свойства­ми — хорошо парят в восходя­щих потоках.
К моделям метательных пла­неров предъявляется одно тре­бование — обеспечить набор высоты только по инерции, от броска рукой. Основной материал для изготовления этих планеров — пенопласт различ­ных марок и сортов. Белый плотный (полистироловый) пе­нопласт даже без внешней отделки-обтяжки может дать ин­тересные результаты при изго­товлении несущих плоскостей. Более пористые сорта, с обтяж­кой поверхности бумагой, дают выигрыш по весу. Главное же при работе над моделью — вни­мательно отнестись к конструи­рованию каждого узла простого аппарата и быть предельно ак­куратным при работе над ними. Предлагаемые конструкции метательных планеров — пере­ходные. Они рассчитаны как на юных, так и на взрослых спорт­сменов. Да-да, не удивляйтесь: этот интереснейший класс на­шел признание среди широчай­шего круга чехословацких мо­делистов. Эти планеры неодно­кратно показывали хорошие ре­зультаты    на   соревнованиях.


Метательная модель планера для тихой погоды
 
Рис. 19. Метательная модель планера для тихой погоды:
1 — груз;  2— носок  фюзеляжа;  3—накладка;  4— фюзеляж;  5—руль  поворота;  6—руль  высоты; 7—киль; 8 — стабилизатор; 9—крыло; 10—усиление крыла; 11—линия максимальной толщины крыла

Модель планера для ветра

 
Рис. 20. Модель планера для ветра:
1 — груз; 2 — накладка; 3 — фюзеляж; 4 — киль; 5 — руль поворота;  6 — руль высоты; 7 — ставилзатор; 8 — усиление под палец; 9 — крыло; 10 — линия наибольшей толщины крыла
Последовательность изготовления такова. Вырезают крыло лобзиком или ножом из пластины пенопласта толщиной 7 -8 мм и обрабатывают по контуру. Выравненную по нижней поверхности заготовку несущей плоскости закрепляют на ров­ной доске. С помощью шкурки сгоняют ровный «клин», то есть уменьшают ее толщину при-мерно от середины до задней кромки. После завершения этой операции крыло профилируют по передней части. Концы кон-солей крыла («ушей» концевых частей) сошкуривают до мини-мальной толщины. Для увели­чения прочности вдоль крыла в месте наибольшей толщины
Первая, более легкая, модель (рис. 19) предназначена для по­летов в тихую погоду, вторая (рис. 20)—применяется при ветре или значительной турбу-ленции воздуха.
Работу над микропарителями начинают с подбора материала и инструмента. Понадобятся пе­нопласт для крыльев, хвостово­го оперения, клей ПВА, сосно­вые или липовые рейки для фю­зеляжей, лобзик и острый нож.
Для обработки несущих плос­костей применяют только наж­дачную бумагу трех зернистостей — средней, мелкой и тон­кой. Листы шкурки наклеивают на ровные фанерные пластины размером 50X200 мм.
приклеивают бумажную полос­ку шириной 5 мм — лонжерон, вдавливая ее в пенопласт.
Более легкий вариант (см. рис. 19) планера имеет стаби­лизатор с несущим плосковы­пуклым профилем. Технология его обработки подобна изготов­лению крыла. Второй вариант (см. рис. 20) снабжен гори­зонтальным оперением, имею­щим профиль «ровной доски» с закругленными краями.
Для образования двойного угла поперечного V крыло раз­резают на четыре части лоб­зиком, после чего стыковые по­верхности скашивают шкуркой так, чтобы стыки сложенных под требуемыми углами деталей были практически без зазоров. Неточная подгонка деталей мо­жет привести к деформациям всего крыла.
Процесс сборки моделей пер­вого и второго вариантов оди­наков. Вначале на полностью укомплектованном фюзеляже монтируют крыло. В течение всего времени высыхания клея контролируют точность взаим­ного положения деталей. Затем устанавливают с заданным на­клоном стабилизатор и киль, в котором надрезом бритвы выделяют руль поворота. Ниж­нюю поверхность корня правой консоли усиливают фанерной накладкой-опорой под указа­тельный палец. Здесь наиболее подходящим клеем будет ПВА. Он же поможет выполнить за­лиз небольшого радиуса на наиболее напряженном соеди­нении правой консоли с фюзе­ляжем. Переднюю кромку на-Кладки обрабатывают «на ус». Надо отметить, что приведен­ные   чертежи   моделей   рассчитаны на моделиста «прав­шу». Если же моделист лучше владеет левой рукой, планеры должны представлять зеркаль­ное отражение тех, что опи­саны здесь.
Внешняя отделка — оклеи­вание несущих поверхностей папиросной или микалентной бумагой. Для этой работы луч­ше применить казеиновый клей. После высыхания клея поверх­ности зачищают шкуркой и, если позволяет масса, красят нитрокрасками ярких контраст­ных цветов. Полетная масса планеров — соответственно 25 и 35 г. Вираж на взлете — правый, на планировании — левый.
Изготовление планеров за­канчивают приклейкой «пятач­ков» из крупной шкурки на обе стороны фюзеляжа. Точ­ное их расположение нужно определить самому — это зави­сит от анатомии кисти руки. При захвате фюзеляжа боль­шим и средним пальцами по­следний сгиб указательного должен точно приходиться на вырез правой консоли, вся кисть максимально открыта, указа­тельный палец отклонен назад. Только такой захват модели может обеспечить хороший бро­сок при старте.
Оба планера рассчитаны на парение с левым виражом ди­аметром около 20 м. Второй ва­риант модели можно отладить для полета и по большому кру­гу. В условиях термического восходящего потока она авто­матически уменьшит радиус виража. Требуемых характе­ристик добиваются за счет небольших (до 2—3 мм) отги­бов руля поворота влево.
Если планеры после броска стремительно  уходят  к   зем­ле, это означает, что недоста­точно точно выдержано задан­ное положение  центра тяже­сти   (последний  смещен  впе­ред) или угол установки кры­ла    относительно   стабилиза­тора меньше нуля. Неточность сборки  компенсируют,  выпол­няя легкий надрез вдоль зад­ней  кромки  стабилизатора  с последующим   небольшим   от­гибом образовавшегося «руля» вверх. Таким же образом избав­ляются от сваливания модели после броска в острую нисхо­дящую спираль. В любом слу­чае угол отгиба «руля» дол­жен быть минимальным. Боль­шие потребные углы свидетель­ствуют только о неправильной сборке или поводках  модели. После   облета «рули» фикси­руются в найденных положе­ниях клеем.
Даже отлаженный планер может после набора высоты нечетко переходить в планиро­вание. Тогда уменьшают пло­щадь левого полукрыла. Неко­торые модели требуют заужива­ния до 5 мм по контуру «уха», однако за один раз срезают не более 1 мм. Таким образом последовательно добиваются плавного перехода к парению без кабрирования и потери вы­соты. Естественно, после обрез­ки «ухо» зашкуривают по кром­кам.
На результат полета не мень­ше влияет правильное выполне­ние броска (рис. 21). Лучше всего предварить его неболь­шим разбегом, в конце которого планер с максимальной ско­ростью запускается вперед-вверх. Длительный разбег бессмыслен. Не дает хороших результатов и запуск с места. По­лезно перед каждым броском размять руку несколькими ими­тационными    движениями (вспомните, как готовятся к выступлению легкоатлеты). Необ­ходима и домашняя трениров­ка. В полевых условиях модель можно заменить теннисным мячиком.
Достижению высоких резуль­татов поможет хорошее знание метеорологических условий и признаков различных терми­ческих потоков. Надо отметить, что достигнуть максимального времени простым планировани­ем даже с максимальной высо­той запуска — чрезвычайно сложно, практически невозмож­но. Достичь «максимума» помо­жет термик. Предложенные мо­дели неплохо реагируют на вос­ходящие потоки.
 
Запуск метательной модели планера
 
Рис. 21. Запуск метательной модели планера

Распечатать ..

 
Другие новости по теме:

  • Метательный планер «Старт»
  • Бумажная модель планера «ДОСААФ»
  • Модель планера «Малыш»
  • Кордовая учебно-тренировочная модель самолета
  • Модель планера


  • Rambler's Top100
    © 2009