www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Модели планеров » Метательные модели плане­ров
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и задачи, решаемые с его помощь ...
Одной из важнейших задач, выполняемых экипажем самоле­та в полете, является сохранение ориентировки. Ее решение до­стигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях ви­зуальную ориентировку не всегда можно применить, а определе­ние места самолета с помощью радиотехнич ...

» Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, ре ...
Навигационная система «Трасса» предназначена для непре­рывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямо­угольной системе координат (дальность и линейное боковое ук­лонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является изме­ритель путевой скорости и угла сноса, исп ...

» Летатель­ный аппарат тяжелее воздуха
Самолет — самый распро­страненный сегодня летатель­ный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называ­ли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит рус­скому исследователю и изобре­тателю, морскому офицеру Александру Федоровичу Мо­жайскому. В 1854 году он задумал построить воздухопла­вательный аппарат, кото ...

» Основные систе­мы и агрегаты самолета
Все современные самолеты сходны по устройству, имеют одни и те же основные систе­мы и агрегаты. Крыло — главная часть самолета — создает подъем­ную силу, удерживающую его в воздухе. У разных само­летов крылья отличаются раз­мерами, формой и числом. Самолет с одним крылом на­зывают монопланом, а имеющий два крыла (одно над   другим) — бипланом. Конструкция крыла зави­сит от типа с ...

» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости
Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструмен­тальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на из­менение плотности воздуха.

» Самолетовождение с использованием наземных радиопеленгаторов - Задачи самолетовождения, решаемые с ...
Наземный радиопеленгатор — это специальное прием­ное радиотехническое устройство, позволяющее определять нап­равление на самолет, на котором работает передающая радиостан­ция. Данные пеленгации наземного радиопеленгатора могут быть использованы только при наличии двусторонней связи экипажа самолета с землей.

» Определение навигационных элементов на контрольном этапе
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно ...

» Поляра ротора
Для аэродинамического расчета удобно иметь характеристики ротора, отнесенные к поступательной скорости V, т.е. коэффициенты подъемной силы и лобового сопротивления ротора. Определение коэффициентов подъемной силы и лобового сопротивления, а также качества ротора при определенном угле атаки ротора, а стало быть и получение поляры, можно вести двумя следующими способами. Способ непосредственного под ...

» Предполетная штурманская подготовка
Предполетная штурманская подготовка организуется и про­водится командиром корабля перед каждым полетом с учетом конкретной навигационной обстановки и метеорологических ус­ловий, складывающихся непосредственно перед вылетом. В этот период каждый член экипажа выполняет по своей специально­сти перечень обязательных действий в соответствии с Инструк­цией по организации и технологии предполетной подгот ...

» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету
Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным до­кументом, в котором отражаются применяемые способы самолето­вождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Защита для жиклера
Устанавливая ми­кродвигатели с передним рас­пределением на модели воз­душного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у мото­ров, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жик­лер. Выход из этого положения весьма прост: достаточно вы­пилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный пре­дох ...

» Парусная тележка
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 м ...

» Определение магнитного пеленга ориентира с помощью девиационного пеленгатора
Для определения МПО необходимо: 1)  установить треногу в центре площадки, где будет списывать­ся девиация; 2)   закрепить пеленгатор на треноге и установить его в горизон­тальное положение по уровню; 3)   отстопорить лимб и магнитную стрелку; 4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб; 5)   разворачивая визирную рамку и наблюдая ...

» Сравнение ротора автожира и крыла самолета
На фиг. 70 даны характеристика ротора, имеющего параметры А = 3, δ = 0,006, γ = 10, Θ = 2˚, k=1,0 и характеристика монопланного крыла, имеющего размах, равный диаметру ротора, и относительное удлинение λ = 6. Крыло имеет тот же профиль что и лопасть ротора автожира (Геттинген429),причем коэффициент подъемной силы крыла в целях сравнения отнесен к площади круга отметае ...

» Предварительная штурманская подготовка к полету
Четкость работы экипажа в воздухе во многом зависит от качества штурманской подготовки к полету, которая проводится с целью облегчения самолетовождения и обеспечения безопасно­сти и точности выполнения полета по заданному маршруту, пре­дотвращения потери ориентировки и прибытия в пункт назначения в заданное время.

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Пилотажный электролет
Тем, кому работа над моде­лями с электродвигателем по­кажется интересной, предла­гаем построить «пилотажку» (рис. 47), разработанную Ю. Павловым. Эта модель несколько сложнее описанных ранее, но и возможности ее шире, да и энерговооружен­ность выше. Подкупает и внеш­няя форма модели, напоми­нающая настоящий самолет. Крыло склеивают из плас­тин упаковочного пенопласта. Можно также вырезать его из ц ...

» Особенности самолетовождения при полетах в особых условиях - Особенности самолетовождения над горн ...
К полетам в особых условиях относятся полеты над горной местностью, в зоне грозовой деятельности, над полярными райо­нами Северного и Южного полушарий, пустынной и малоориентирной местностями, большими водными пространствами, на ма­лых высотах и ночью. Самолетовождение в особых условиях навигационной обста­новки выполняется по общим правилам с учетом некоторых осо­бенностей, знание которых являетс ...

» Расчет элементов захода на посадку по малому прямоугольному маршруту в штиль
Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий междуна­родной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самоле­тов, имеющих приборную ско­рость пол ...

» Контроль и исправление пути
При выполнении полета вследствие изменения ветра, неточного выдерживания заданного режима полета и ошибок в навигацион­ных измерениях и расчетах самолет может уклониться от ЛЗП и выйти на заданные пункты маршрута в неназначенное время. В целях точного следования по заданной трассе (маршруту) и точного по времени выхода на контрольные ориентиры, поворот­ные пункты и аэродром посадки, экипаж в проце ...

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Конические проекции
Конические проекции получаются в результате переноса поверх­ности Земли на боковую поверхность конуса, касательного к одной из параллелей или секущего земной шар по двум заданным па­раллелям. Затем конус разрезается по образующей и разворачи­вается на плоскость. Конические проекции в зависимости от распо­ложения оси конуса относительно оси вращения Земли могут быть нормальные, поперечные и косые. ...

» Единицы измерения расстояний
В самолетовождении основными единицами измерения расстоя­ний являются километр и метр. В некоторых случаях в качестве единицы измерения расстояния применяется морская миля (ММ). В США и Англии для измерения расстояний, кроме морской мили, применяется английская статутная миля (AM) и фут. Морская ми­ля представляет собой длину дуги меридиана в 1'.

» Предполетная проверка КС-6
Для проверки КС в режиме «МК» необходимо: 1.  Включить курсовую систему. 2.  Установить на УШ и КМ-4 магнитное склонение, равное ну­лю. 3.  Установить переключатель режимов работы на пульте управ­ления   в положение   «МК». 4. Установить переключатель    «Осн. — Зап.»     в    положение «Осн.». 5.  Через 5 мин после включения КС нажать кнопку быстрого согласования и согласовать указатели, ко ...

» Модель планера
Модель планера — конструк­ция,    которая    воспроизводит лишь схему основных частей планера, не копирующая его внешне. Знакомство с моделями пла­неров лучше начать с самой простой модели, изготовленной из бумаги. В практике авиамоделизма ее называют учеб­ной (рис. 16).

» Контроль пути по направлению и дальности
Контроль пути по направлению и дальности может осуществляться с помощью боковых радиолокаторов путем нанесения на карту места самолета по переданным на борт самолета азимуту и дальности. Такой контроль можно осуществить и без прокладки А и Д на карте, что сокращает время на получение необходимых данных контроля пути.

» Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэродрома посадки
В тех случаях, когда полет выполняется с ортодромическим кур­сом на аэродром, где горизонтальная составляющая геомагнитно­го поля мала, необходимо до начала снижения с эшелона уста­новить на УШ курс полета самолета относительно магнитного ме­ридиана аэродрома посадки. Для этой цели в режиме «ГПК» уста­навливают УШ на отсчет:ОМКа = МКГ + (± Δм.м.с) + (λа—λм.с) sin φcp ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Метательные модели плане­ров
Строим сами летающие модели » Модели планеров  |   Просмотров: 17355  
 
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, набираемые при взлете. Метательные модели планеров отличаются и хоро­шими планирующими свойства­ми — хорошо парят в восходя­щих потоках.
К моделям метательных пла­неров предъявляется одно тре­бование — обеспечить набор высоты только по инерции, от броска рукой. Основной материал для изготовления этих планеров — пенопласт различ­ных марок и сортов. Белый плотный (полистироловый) пе­нопласт даже без внешней отделки-обтяжки может дать ин­тересные результаты при изго­товлении несущих плоскостей. Более пористые сорта, с обтяж­кой поверхности бумагой, дают выигрыш по весу. Главное же при работе над моделью — вни­мательно отнестись к конструи­рованию каждого узла простого аппарата и быть предельно ак­куратным при работе над ними. Предлагаемые конструкции метательных планеров — пере­ходные. Они рассчитаны как на юных, так и на взрослых спорт­сменов. Да-да, не удивляйтесь: этот интереснейший класс на­шел признание среди широчай­шего круга чехословацких мо­делистов. Эти планеры неодно­кратно показывали хорошие ре­зультаты    на   соревнованиях.


Метательная модель планера для тихой погоды
 
Рис. 19. Метательная модель планера для тихой погоды:
1 — груз;  2— носок  фюзеляжа;  3—накладка;  4— фюзеляж;  5—руль  поворота;  6—руль  высоты; 7—киль; 8 — стабилизатор; 9—крыло; 10—усиление крыла; 11—линия максимальной толщины крыла

Модель планера для ветра

 
Рис. 20. Модель планера для ветра:
1 — груз; 2 — накладка; 3 — фюзеляж; 4 — киль; 5 — руль поворота;  6 — руль высоты; 7 — ставилзатор; 8 — усиление под палец; 9 — крыло; 10 — линия наибольшей толщины крыла
Последовательность изготовления такова. Вырезают крыло лобзиком или ножом из пластины пенопласта толщиной 7 -8 мм и обрабатывают по контуру. Выравненную по нижней поверхности заготовку несущей плоскости закрепляют на ров­ной доске. С помощью шкурки сгоняют ровный «клин», то есть уменьшают ее толщину при-мерно от середины до задней кромки. После завершения этой операции крыло профилируют по передней части. Концы кон-солей крыла («ушей» концевых частей) сошкуривают до мини-мальной толщины. Для увели­чения прочности вдоль крыла в месте наибольшей толщины
Первая, более легкая, модель (рис. 19) предназначена для по­летов в тихую погоду, вторая (рис. 20)—применяется при ветре или значительной турбу-ленции воздуха.
Работу над микропарителями начинают с подбора материала и инструмента. Понадобятся пе­нопласт для крыльев, хвостово­го оперения, клей ПВА, сосно­вые или липовые рейки для фю­зеляжей, лобзик и острый нож.
Для обработки несущих плос­костей применяют только наж­дачную бумагу трех зернистостей — средней, мелкой и тон­кой. Листы шкурки наклеивают на ровные фанерные пластины размером 50X200 мм.
приклеивают бумажную полос­ку шириной 5 мм — лонжерон, вдавливая ее в пенопласт.
Более легкий вариант (см. рис. 19) планера имеет стаби­лизатор с несущим плосковы­пуклым профилем. Технология его обработки подобна изготов­лению крыла. Второй вариант (см. рис. 20) снабжен гори­зонтальным оперением, имею­щим профиль «ровной доски» с закругленными краями.
Для образования двойного угла поперечного V крыло раз­резают на четыре части лоб­зиком, после чего стыковые по­верхности скашивают шкуркой так, чтобы стыки сложенных под требуемыми углами деталей были практически без зазоров. Неточная подгонка деталей мо­жет привести к деформациям всего крыла.
Процесс сборки моделей пер­вого и второго вариантов оди­наков. Вначале на полностью укомплектованном фюзеляже монтируют крыло. В течение всего времени высыхания клея контролируют точность взаим­ного положения деталей. Затем устанавливают с заданным на­клоном стабилизатор и киль, в котором надрезом бритвы выделяют руль поворота. Ниж­нюю поверхность корня правой консоли усиливают фанерной накладкой-опорой под указа­тельный палец. Здесь наиболее подходящим клеем будет ПВА. Он же поможет выполнить за­лиз небольшого радиуса на наиболее напряженном соеди­нении правой консоли с фюзе­ляжем. Переднюю кромку на-Кладки обрабатывают «на ус». Надо отметить, что приведен­ные   чертежи   моделей   рассчитаны на моделиста «прав­шу». Если же моделист лучше владеет левой рукой, планеры должны представлять зеркаль­ное отражение тех, что опи­саны здесь.
Внешняя отделка — оклеи­вание несущих поверхностей папиросной или микалентной бумагой. Для этой работы луч­ше применить казеиновый клей. После высыхания клея поверх­ности зачищают шкуркой и, если позволяет масса, красят нитрокрасками ярких контраст­ных цветов. Полетная масса планеров — соответственно 25 и 35 г. Вираж на взлете — правый, на планировании — левый.
Изготовление планеров за­канчивают приклейкой «пятач­ков» из крупной шкурки на обе стороны фюзеляжа. Точ­ное их расположение нужно определить самому — это зави­сит от анатомии кисти руки. При захвате фюзеляжа боль­шим и средним пальцами по­следний сгиб указательного должен точно приходиться на вырез правой консоли, вся кисть максимально открыта, указа­тельный палец отклонен назад. Только такой захват модели может обеспечить хороший бро­сок при старте.
Оба планера рассчитаны на парение с левым виражом ди­аметром около 20 м. Второй ва­риант модели можно отладить для полета и по большому кру­гу. В условиях термического восходящего потока она авто­матически уменьшит радиус виража. Требуемых характе­ристик добиваются за счет небольших (до 2—3 мм) отги­бов руля поворота влево.
Если планеры после броска стремительно  уходят  к   зем­ле, это означает, что недоста­точно точно выдержано задан­ное положение  центра тяже­сти   (последний  смещен  впе­ред) или угол установки кры­ла    относительно   стабилиза­тора меньше нуля. Неточность сборки  компенсируют,  выпол­няя легкий надрез вдоль зад­ней  кромки  стабилизатора  с последующим   небольшим   от­гибом образовавшегося «руля» вверх. Таким же образом избав­ляются от сваливания модели после броска в острую нисхо­дящую спираль. В любом слу­чае угол отгиба «руля» дол­жен быть минимальным. Боль­шие потребные углы свидетель­ствуют только о неправильной сборке или поводках  модели. После   облета «рули» фикси­руются в найденных положе­ниях клеем.
Даже отлаженный планер может после набора высоты нечетко переходить в планиро­вание. Тогда уменьшают пло­щадь левого полукрыла. Неко­торые модели требуют заужива­ния до 5 мм по контуру «уха», однако за один раз срезают не более 1 мм. Таким образом последовательно добиваются плавного перехода к парению без кабрирования и потери вы­соты. Естественно, после обрез­ки «ухо» зашкуривают по кром­кам.
На результат полета не мень­ше влияет правильное выполне­ние броска (рис. 21). Лучше всего предварить его неболь­шим разбегом, в конце которого планер с максимальной ско­ростью запускается вперед-вверх. Длительный разбег бессмыслен. Не дает хороших результатов и запуск с места. По­лезно перед каждым броском размять руку несколькими ими­тационными    движениями (вспомните, как готовятся к выступлению легкоатлеты). Необ­ходима и домашняя трениров­ка. В полевых условиях модель можно заменить теннисным мячиком.
Достижению высоких резуль­татов поможет хорошее знание метеорологических условий и признаков различных терми­ческих потоков. Надо отметить, что достигнуть максимального времени простым планировани­ем даже с максимальной высо­той запуска — чрезвычайно сложно, практически невозмож­но. Достичь «максимума» помо­жет термик. Предложенные мо­дели неплохо реагируют на вос­ходящие потоки.
 
Запуск метательной модели планера
 
Рис. 21. Запуск метательной модели планера

Распечатать ..

 
Другие новости по теме:

  • Метательный планер «Старт»
  • Бумажная модель планера «ДОСААФ»
  • Модель планера «Малыш»
  • Кордовая учебно-тренировочная модель самолета
  • Модель планера


  • Rambler's Top100
    © 2009