www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Модели самолетов с резиновым мотором » Летатель­ный аппарат тяжелее воздуха
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Подготовка к полету с использованием РСБН-2
Опыт использования РСБН-2 показывает, что достаточно пол­ная реализация возможностей этой системы прежде всего зави­сит от заблаговременной  подготовки  данных  для ее применения и оперативностиработы экипажа в полете, поэтому экипажи са­молетов, на которых установлена   аппаратура   РСБН-2,   обязаны    в   период   предварительной подготовки к полету подготовить по всем участкам трассы необходим ...

» Сущность кодовых выражений ЩГЕ и ЩТФ
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

» Полет от наземного радиопеленгатора
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр ...

» Определение момента пролета радиостанции или ее траверза
Полет на радиостанцию заканчивается определением момента ее пролета. Как правило, этот момент необходимо ожидать. О приближении самолета к радиостанции можно су­дить по следующим призна­кам: а)   истекает       расчетное время прибытия на РНТ; б)   увеличивается   чувст­вительность    радиокомпаса, что   сопровождается   откло­нением стрелки   индикатора настройки вправо.

» Определение и устранение девиации гироиндукционного компаса ГИК-1
При устранении девиации гироиндукционного компаса ГИК-1 необходимо: 1. Установить регулировочные винты коррекционного механизма в их среднее положение. При выпуске компаса с завода регулировочные винты лекаль­ного устройства устанавливаются в среднее положение, при кото­ром коррекционный механизм обеспечивает устранение остаточной девиации в пределах ±6°. В процессе предыдущего устранения девиации ...

» Особенности использования самолетной радиолокационной станции РПСН-3
Радиолокационная станция РПСН-3 выпускается в нескольких вариантах. Комплектность станции зависит от типа самолета. На самолете Ан-24 для работы с РПСН-3 установлены: пульт управ­ления, пульт контроля и один индикатор. Станция имеет семь режимов работы: «Снос», «Обзор», «Дальний обзор», «Горы — Грозы», «Изо—Эхо», «Самолеты» и «Маяк». Режим «Маяк» на всех вариантах станции не использует ...

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Змей-вертушка
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет ...

» Определение места самолета
Место самолета при помощи наземного радиолокатора опреде­ляется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1)   запросить у диспетчера место самолета; 2)   получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3)   отложить  на  карте от  радиолокатора  полученный   азимут и дальность на линии азимута.

» Ортодромия и локсодромия
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных  линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. ...

» Способы определения угла сноса в полете
В полете угол сноса может быть определен одним из следую­щих способов: 1)   по известному ветру (на НЛ-10М, НРК-2, ветрочете и под­счетом в уме); 2)  по отметкам места самолета на карте; 3)   по радиопеленгам при полете от РНТ или на РНТ; 4)  с помощью доплеровского измерителя; 5)   при  помощи  бортового  визира или самолетного  радиоло­катора; 6)   глазомерно (по видимому бегу визирных точек).

» Вывод самолета на запасный аэродром с помощью наземного радиолокатора
Вывод самолета на запасный аэродром с помощью наземного радиолокатора применяется в следующих случаях: 1)   при потере ориентировки экипажем самолета; 2)   при   отказе   радиокомпаса   и  невозможности   использовать другие средства самолетовождения; 3)   при полете в пункт, в котором не имеется радионавигацион­ной точки.

» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Использование РПСН-2 в режиме «Препятствие»
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, ко ...

» Определение места самолета
Место самолета определяется с целью полного контроля пути, определения навигационных элементов полета и восстановления потерянной ориентировки. В зависимости от условий полета и навигационной обстановки МС может быть определено: по одному радиопеленгатору; по двум радиопеленгаторам; по радиопеленгатору и радиостанции.

» Особенности самолетовождения над безориентирной местностью
Условия самолетовождения    над    безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Полет на радиопеленгатор
При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашиваются в телефонном режиме обратные пеленги (ОП) словами: «Дайте обратный пеленг».При использовании KB радиопеленгаторов для контроля пути по направлению запрашиваются пеленги в телеграфном режиме кодовым выражением ЩДМ, которое означает: «Сообщите магнит­ный курс, с которым я должен направиться к вам при отсутст­вии в ...

» Выход на линию заданного пути
Выход на ЛЗП — важный этап работы экипажа. Он заключа­ется в определении такого курса следования, при выдерживании которого фактический путевой угол был бы равен заданному пу­тевому углу или отличался от него не более чем на 2°. В зависимости от навигационной обстановки курс следования может определяться одним из следующих способов: 1)   по прогностическому или шаропилотному ветру; 2)   по в ...

» Несложный пилотажный змей
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построи ...

» Направления на земной поверхности
В самолетовождении принято направления на земной поверх­ности измерять в градусах относительно северного направления ме­ридиана. Направления могут указываться азимутом (истинным пе­ленгом) и путевым углом. Азимутом, или истинным пеленгом, ориентира назы­вается угол, заключенный между северным направлением мериди­ана, проходящего через данную точку, и направлением на наблю­даемый ориентир (рис. 1.4 ...

» Дирижабли
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого ...

» Курсовая система КС-6, ее назначение и комплект
Курсовая система КС-6 представляет собой централизованное устройство, объединяющее магнитные, гироскопические и астроно­мические средства измерения курса, предназначенное для опреде­ления и выдерживания магнитного, истинного и ортодромического курсов самолета, углов разворота, а также для выдачи сигналов курса в автопилот, навигационный индикатор НИ-50БМ и другие потребители. Совместно с курсовой ...

» Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратн ...
Такая операция осуществляется по формулам: V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6. Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2. Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индек ...

» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и ука­затели: 1.  Щиток управления системой. 2.  Указатель угла сноса и путевой скорости. 3.  Задатчик угла карты, 4.  Счетчик координат. 5.  Переключатель «ДИСС—АНУ». 6.  Переключатель «Счетчик» («Вкл.—Выкл.»). 7.  Задатчик ветра.

» Формулы полных сил ротора
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Летатель­ный аппарат тяжелее воздуха
Строим сами летающие модели » Модели самолетов с резиновым мотором  |   Просмотров: 7177  
 
Самолет — самый распро­страненный сегодня летатель­ный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называ­ли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит рус­скому исследователю и изобре­тателю, морскому офицеру Александру Федоровичу Мо­жайскому. В 1854 году он задумал построить воздухопла­вательный аппарат, который управлялся бы так же, как и судно в море, и использо­вать для него двигатель и винт, применявшиеся на пароходах. Уверенность Можайского в воз­можности полета подкрепля­лась исследовательской рабо­той. Он изучал полет птиц глазами инженера: измерял размах крыльев, определял их массу, вогнутость профиля и наклон их к линии полета. На основании своих наблюде­ний Можайский сделал важ­ное заключение о том, что «чем   выше  скорость  движения, тем большую тяжесть может нести та же поверхность крыла».
Помогли Можайскому в соз­дании самолета и опыты с воздушными змеями. Сн по­строил большой воздушный змей и совершал на нем поле­ты. Буксировала этот змей тройка лошадей. Полеты на змее подсказали изобретате­лю, какой величины и формы должно быть крыло задуман­ного им самолета. После этого он строил летающие модели, винты которых приводились во вращение часовыми пружи­нами. Такие модели успешно летали и с грузом.
Более двадцати лет про­водил свои исследования А. Ф. Можайский, которые позволили ему совершить на­учный подвиг — разработать проект и построить в 1885 году летательный аппарат. Нет документальных данных о лет­ных испытаниях первого само­лета, но пробежки по аэродрому он совершал. В одной из   них   произошла   поломка крыла  и дальнейшая работа осталась незавершенной.
В это же время в других странах предпринимались по­пытки создания крылатых ле­тательных аппаратов. Особен­но преуспели в этом амери­канские изобретатели и пило-ты братья Уилбер и Орвилл Райт. Они много занимались конструированием летающих моделей планеров, совершали на них полеты.      
К концу 1903 года братья Райт закончили постройку аэроплана с бензиновым мото­ром. И 17 декабря их самолет впервые в мире поднялся в воз­дух, пролетев всего 32 м за 12 с. Этот день вошел в исто­рию авиации как дата первого управляемого полета летатель­ного аппарата тяжелее возду­ха, приводимого в движение двигателем — «моторного аэро­плана».
Братья Райт на своем само­лете (биплане) сделали очень важное нововведение — приме­нили систему искривления крыльев (гоширование), что позволило обеспечить попе­речную устойчивость аппара­та, не имевшего стабилиза­тора Руль высоты находился впереди, а руль направления — сзади. Два толкающих винта (пропеллера) были установ­лены за коробкой крыльев и связаны цепной передачей с мотором, размещенным посе­редине нижнего крыла. Из-за отсутствия шасси взлетно-по­садочным, вернее посадочным, приспособлением служили лы-жи. Взлетал самолет Райтов при помощи катапульты.
После первых полетов аэро-планов   самолетостроение   получило развитие во многих странах. Во Франции 22 сен­тября 1906 года Сантос-Дю-мон пролетел на своем аппа­рате 220 м. Строили и испы­тывали свои аэропланы Вуа-зен, Фарман, Блерио и дру­гие авиаторы. Особенностями французских аппаратов были установка винта непосредст­венно на валу двигателя, не­подвижный стабилизатор и на­личие шасси. В 1909 году Луи Блерио на самолете перелетел пролив Ла-Манш.
Первый полет аэроплана рус­ской конструкции зафикси­рован комиссией Всероссий­ского аэроклуба 5 июня 1910 го­да. Это был самолет, создан­ный Я. М. Гакелем, с разма­хом крыльев 11,5 м, двига­телем мощностью 35—40 л. с. и массой без пилота и горю­чего 560 кг.
Через год тот же Я- М. Га-кель построил самолет, имею­щий скорость свыше 90 км/ч и дальность полета без посад­ки около 100 км.
А 6 июля 1913 года в воз­дух поднялся первый в ми­ре четырехмоторный самолет «Русский витязь» конструкто­ра И. И. Сикорского. Вско­ре им же была закончена постройка четырехмоторного бомбардировщика «Илья Му­ромец».
Славную страницу в ле­топись мировой авиации впи­сал русский военный летчик П. Н. Нестеров. 27 августа 1913 года он впервые выпол­нил на самолете мертвую пет­лю (круг в вертикальной плос­кости) и заложил практиче­ские основы высшего пило­тажа.
После Великой Октябрьской революции развитию авиа­ции в нашей стране уделя­лось большое внимание. 10 ноября 1917 года по инициа­тиве В. И. Ленина было соз­дано Бюро комиссаров авиа­ции и воздухоплавания, ор­ганизованы первые авиаци­онные отряды, активно участ­вовавшие в боях с бело­гвардейцами и интервен­тами.
После окончания граждан­ской войны партия и пра­вительство прилагали все для создания собственной авиационной промышленности. В 1918 году был создан Центральный аэрогидродина­мический институт (ЦАГИ) — центр научной и конструк­торской авиационной мысли страны. В 1920 году в на­шей стране открылась пер­вая пассажирская линия на трассе Москва — Нижний Нов­город.
В 1924 году был построен первый советский цельноме­таллический самолет АНТ-2 конструкции А. Н. Туполева. Под руководством трижды Ге­роя Социалистического Труда академика А. Н. Туполева создано более 100 различных самолетов, в их числе первый реактивный для пассажирских рейсов — Ту-104 и первый сверхзвуковой того же назна­чения — Ту-144.
В 1934 году семи летчи­кам: М. В. Водопьянову, И. В. Доронину, Н. П. Кама­нину, А. В. Ляпидевскому, С. А. Леваневскому, В. С. Мо­локову и М. Т. Слепневу, отличившимся при спасении челюскинцев, впервые в нашей стране былр присвоена звание Героя Советского Союза.
18—20 июля 1937 года на самолете АНТ-25 экипаж в со­ставе В. П.. Чкалова, Г. Ф. Бай­дукова и А. В. Белякова со­вершил впервые в истории авиации перелет через Север­ный полюс в Америку, пробыв в воздухе 63 ч и покрыв рас­стояние свыше 8 тыс. км.
Неоценима роль нашей авиации в Великой Отечест­венной войне. Свыше 100 тыс. самолетов дала фронту авиа­ционная промышленность. Со­ветские летчики разбили хва­леную немецкую авиацию. Свы­ше 2000 летчиков было удо­стоено звания Героя Советско­го Союза,, 65 летчиков награж­дены звездами Героев дважды, а двое — А. И. Покрышкин и И. Н. Кожедуб стали триж­ды Героями Советского Союза.
Широко известны имена авиационных конструкторов П. Н. Поликарпова (само­лет По-2); С. В. Ильюшина (штурмовик Ил-2, пассажир­ские лайнеры Ил-18, Ил-62 и созданный в КБ имени Илью­шина аэробус Ил-86), С. А. Ла­вочкина (Ла-5, Ла-7, Ла-15), А. С. Яковлева (Як-1, Як-3, Як-9, Як-15, Як-42 и др.), О. К. Антонова (Ан-2, Ан-12, Ан-22, Ан-124), А. И. Микоя­на (создателя МиГов), О. О, Сухого (конструктора истребителей).
Сейчас наша страна связа­на воздушными трассами бо­лее чем со 100 странами мира - Авиация широко используется в народном хозяйстве.
Сегодняшние самолеты раз­нятся не только формой, мас­сой, размерами, но и  назна-
чекием. Существуют самолеты гражданские и военные. Само­леты гражданской авиации бы­вают пассажирские, грузовые, специального назначения, са-нитарные и спортивные. К воен-ным относятся истребители, перехватчики, ракетоносцы, бомбардировщики и другого назначения.

Распечатать ..

 
Другие новости по теме:

  • Тепловой воздушный шар
  • Стремление к полету
  • Вертолет (геликоптер)
  • Ракета— летательный аппа­рат тяжелее воздуха
  • Первые воздушные змеи


  • Rambler's Top100
    © 2009