www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Модели самолетов с резиновым мотором » Схематическая модель са­молета
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Расчет времени и места набора высоты заданного эшелона
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна. Рис. 5.5. Определение времени и места набора высоты ...

» Двухмоторный электролет
Двухмоторный электролет был создан в результате даль­нейшего  развития  моделей с электродвигателем. Демон­страционные полеты такого аппарата вызывают большой интерес в любой аудитории, будь то школа или пионерский лагерь; они хорошо смотрятся на слетах, фестивалях и празд­никах. Двухмоторная схема модели позволяет повысить ее энерговооруженность, добить­ся надежности полета на от­крытом воздухе.

» Модель электролета наборной конструкции
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки:   для   кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток ...

» Подготовка данных для применения КС-6
Для применения КС-6 в полете в различных режимах работы нужно предварительно на земле подготовить необходимые дан­ные. Для использования КС в режиме «ГПК» при подготовке к по­лету необходимо произвести дополнительную разметку маршрута для полета по ортодромии. В этом случае, кроме обычной проклад­ки и разметки маршрута, необходимо:

» Режимы работы, органы управления, указатели КС-6 и их назначение
В зависимости от решаемых задач и условий полета курсовая система  может  работать: 1) в   режиме гирополукомпаса   «ГПК»; 2)   в   режиме   магнитной   коррекции   «МК»; 3)   в режиме астрономической коррекции «АК».

» Управляемость автожира и ротор
Рассмотрим, каким образом воздействия руля глубины и элеронов передаются на ротор и переводят его плоскость вращения в нужный режим или, вернее, как при подвесных лопастях (шарнирное крепление) плоскость вращения ротора следует за фюзеляжем при наклонах последнего. Возьмем для рассмотрения 4-лопастный ротор. Предположим, что автожир нужно перевести с угла i на больший угол атаки i', для чего руле ...

» Модель вертолета «Бел­ка»
Модель вертолета «Бел­ка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние ло­пасти закрепляют на раме, служащей одновременно фю­зеляжем. Раму изготовляют из двух липовых пластин раз­мером 220 Х 10 Х 1 мм, верх­ней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две дру­гих посредст ...

» Парусная тележка
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 м ...

» Предполетная проверка КС-6
Для проверки КС в режиме «МК» необходимо: 1.  Включить курсовую систему. 2.  Установить на УШ и КМ-4 магнитное склонение, равное ну­лю. 3.  Установить переключатель режимов работы на пульте управ­ления   в положение   «МК». 4. Установить переключатель    «Осн. — Зап.»     в    положение «Осн.». 5.  Через 5 мин после включения КС нажать кнопку быстрого согласования и согласовать указатели, ко ...

» Основные сведения о НИ-50БМ
В комплект навигационного индикатора входят следующие ос­новные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кро­ме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автомат ...

» Определение места самолета
Место самолета в полете определяется в целях контроля пути, определения навигационных элементов и восстановления поте­рянной ориентировки. С помощью радиокомпаса место самолета может быть определено по одной и двум радиостанциям. Определение места самолета по одной радиостанции двух­кратным пеленгованием и прокладкой пеленгов на карте. Для применения данного способа необходимо использовать боковые ...

» Расчет пройденного расстояния, времени полета и путевой скорости
Пройденное   расстояние определяется   по формуле S = Wt, где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек). Для определения пройденного расстояния на НЛ-10М необходи­мо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 и ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Условия ведения визуальной ориентировки
На ведение визуальной ориентировки оказывают влияние: 1. Характер пролетаемой   местности.    Это условие имеет первостепенное значение  при определении  возможности  и удобства ведения визуальной ориентировки. В районах, насыщен­ных крупными и характерными ориентирами, вести визуальную ориентировку легче, чем в районах с однообразными ориентирами. При полете над безориентирной местностью или над ...

» Простейший вертолет — «муха»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

» Классификация высот полета от уровня измерения
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн ...

» Периодическое изменение угла взмаха лопасти и угла атаки сечения лопасти
Для выяснения махового движения па разных режимах и изменении угла β по ψ а так же для выяснения влияния махового движения на истинный угол атаки α сечения по вышеприведенным формулам сделан подсчет для ротора, имеющего следующие употребительные в практике параметры: γ=10; Θ=2˚

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

» Авиационный моделизм
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно. Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамо ...

» Умножение данного числа на тригонометрические функции углов
Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчи­тать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Использование РПСН-2 в режимах «Обзор» и «Дальний обзор»
Эти режимы предназначены для обзора земной поверхности, пе­риодического определения места самолета, определения начала снижения с эшелона и для выполнения маневра захода на по­садку.

» Условия плавной работы ротора
Плавность в работе ротора на всех полетных режимах автожира является необходимым требованием, так как неровности и тряска, передаваясь на остальные части машины, будут влиять на прочность конструкции, регулировку ротора и других деталей. За неимением достаточного эксплуатационного опыта придется пока ограничиться предварительными соображениями об условиях плавной работы ротора. Во-первых, ротор до ...

» Определение места самолета
Место самолета при помощи наземного радиолокатора опреде­ляется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1)   запросить у диспетчера место самолета; 2)   получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3)   отложить  на  карте от  радиолокатора  полученный   азимут и дальность на линии азимута.

» Первые воздушные змеи
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю. Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминаю ...

» Кордовая модель самолета «Универсал»
Универсальную кордовую модель самолета (рис. 42) разработали юные техники Ти­мирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневрен­ность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пило­тажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изго ...

» Расчет времени и места встречи самолета с темнотой или рассветом и определение продолжительности ноч ...
Когда полет начался днем, а заканчивается ночью или наоборот, необходимо знать, в какое время произойдет встреча самолета с темнотой или рассветом и какова продолжительность ночного по­лета. Время и место встречи самолета с темнотой или рассветом мож­но рассчитать с помощью НЛ-10М или по графику. Рассмотрим порядок такого расчета с помощью НЛ-10М.

» Азимутальные проекции
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проек ...

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Использование КС-6 в полете
Курсовая система позволяет выполнять полеты с локсодроми­ческими и ортодромическими путевыми углами. Полеты по локсо­дромии рекомендуются в умеренном и тропическом поясах при ус­ловии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Схематическая модель са­молета
Строим сами летающие модели » Модели самолетов с резиновым мотором  |   Просмотров: 11098  
 
Схематическая модель са­молета (рис. 29) немного слож­нее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в нату­ральную величину). Порядок Работы может быть такой.
Фюзеляж делают из прямо­слойной сосновой или липо­вой рейки длиной 800 мм, сечением 12Х 10 мм, к хвосто­вой части сечение можно уменьшить до 8X6 мм.
Сечение передней и задней кромок стабилизатора 4Х ХЗ мм; закругления выги­бают из бамбуковой рейки сечением 3X2 мм и соеди­няют с кромками «на ус» клеем. Места соединения об­матывают нитками. Жесткость увеличивают тремя нервюрами сечением 2X2 мм. По черте­жу отмечают середину стаби­лизатора и закрепляют его на хвостовой части фюзеляжа, предварительно вырезав в нем небольшие углубления под кромки стабилизатора.
Киль из бамбуковой рейки изгибают и вставляют в от­верстие фюзеляжа, просвер­ленное немного ближе перед­ней кромки стабилизатора.
Схематическая модель са­молета

Рис. 29. Схематическая модель самолета: а -  рабочий чертеж; б — порядок изготовления
 
Подшипником служит ли­повый брусок размером 25Х Х20Х Ю мм. Его приклеивают к передней части фюзеляжа, снизу обматывают нитками. В подшипнике сверлят отвер­стие диаметром 1,5 мм, в ко­торое пропускают  вал  винта.
Для кромок крыла берут сосновые рейки сечением 5Х Х4 мм и изгибают их к сере­дине под углом 10°. Бамбу­ковые закругления крепят к кромкам так же, как на стаби­лизаторе. Нервюры изготов­ляют из сосновых реек сече­нием 3X2 мм, концы их заостряют «лопаткой» и встав­ляют с клеем в проколы кро­мок. Кабанчик для крепления крыла к фюзеляжу вырезают из липового бруска.  Следует помнить, что передняя кромка должна быть выше задней на 8—10 мм. Привязывают кабанчик   к   крылу   нитками.
Воздушный винт — самая сложная часть схематической модели самолета. Его изго­товляют из бруска липы, оль­хи или осины размером 300Х30X20 мм. На широкой грани бруска проводят две взаимно перпендикулярные осе­вые линии, в центре сверлят отверстие диаметром 1 мм. На­кладывают фанерный или цел­лулоидный шаблон вида свер­ху, совмещая осевые линии и очерчивая одну лопасть, затем поворачивают шаблон на 180° вокруг оси и наносят контуры другой лопасти. Ост­рым ножом срезают лишнюю часть бруска и обрабатывают напильником. На одну из бо­ковых граней накладывают шаблон вида сбоку, очерчи­вают его карандашом и сре­зают лишнее. В дальнейшем винт обрабатывают с верхнего правого края каждой лопасти.
Верхняя поверхность ло­пастей должна быть слегка выпуклой, а нижняя — плос­кой или немного вогнутой. Вогнутость достигают, соскаб­ливая древесину осколком стек­ла или полукруглым напиль­ником.
Зачищают лопасти наждач­ной бумагой, одновременно Центрируя винт. Для этого на­девают его на тонкую прово­локу и вращают. Если масса лопастей винта одинакова, он остановится в горизонтальном положении. Если нет, необхо­димо опускающуюся лопасть доработать напильником или зачистить наждачной бумагой и вновь проверить центровку винта,  добиваясь  равновесия.
Готовый винт покрывают двумя-тремя слоями нитрола­ка. В ступице винта закреп­ляют вал из стальной прово­локи диаметром 1,5 м, наде­вают на него две шайбы и вставляют в подшипник. Сво­бодный конец вала изгибают в виде крючка для крепления резинового двигателя. Другой крючок для двигателя крепят в хвостовой части фюзеляжа на расстоянии 600 мм от подшипника.
Обтягивают модель самоле­та так же, как и модель пла­нера, папиросной или мика-лентной бумагой. Обтяжку крыла производят только свер­ху в два приема: сперва одну половину, потом — другую.
Стабилизатор оклеивают только сверху, а киль — с обеих сторон. Бумагу, высту­пающую за кромки, счищают наждачной бумагой или ост­рым ножом.
Резиновый двигатель дли­ной 600 мм изготовляют из резины сечением 2Х 1 мм. Для этого с доску вбивают два гвоздя на расстоянии, равном длине резинового дви­гателя, резиновую нить массой 30 г обматывают вокруг гвоз­дей, а свободные концы связы­вают. В местах крепления двигатель перевязывают тон­кой резинкой.
Готовый резиновый двига­тель промывают в теплой мыль­ной воде, просушивают вда­ли от источников тепла, сма­зывают касторовым маслом и упаковывают на несколько дней в темную стеклянную банку.
Для определения максималь­ного числа витков двигате­лей один из них следует закрутить до разрыва. Зная возможности резиновых дви­гателей данной длины, можно провести их динамическую формовку. Наиболее простой способ формовки заключается в последовательном закручи­вании и раскручивании рези-номотора. Начинают закрутку с 20 % допустимого числа витков с последующим добав­лением 10—15 % от макси­мального числа витков. Закан­чивают формовку закруткой на 80—85 % максимального числа витков. После этого сно­ва промывают резиновый дви­гатель в теплой мыльной воде, просушивают, смазывают ка­сторовым маслом и упаковы­вают в полиэтиленовый пакет или стеклянную банку. Вы­держав одну-две недели, такой двигатель можно использовать на соревнованиях. Иногда ди­намическую формовку двига­телей удобно делать и при тренировочных запусках.
Регулировку модели прово­дят следующим образом. Сна­чала проверяют, нет ли пере­косов при видах сверху и спе­реди. Перемещением крыла вдоль рейки устанавливают центр тяжести модели с рези­новым двигателем на расстоя­нии 1/3 длины хорды крыла от передней кромки.
Добившись правильной цен­тровки, модель регулируют на планирование (без работы вин­та), так же как и схемати­ческую модель планера: дер. жа модель одной рукой за фюзеляж, немного наклонив носовую часть вниз, плавным движением толкают ее. Если модель задирает нос, крыло передвигают к стабилизатору. При крутом опускании (пики­ровании) модели крыло пере­мещают вперед. Хорошо отре­гулированная модель должна пролетать 8—12 м.
Более сложный этап — это регулировка моторного поле­та. Закрутив резиновый дви­гатель на 50—60 витков, мо­дель берут за фюзеляж правой рукой, а левой придерживают винт. Легким толчком пускают модель горизонтально. Повто­ряют несколько раз запуск модели, постепенно увеличи­вая  число  витков  двигателя.
Сложность регулирования модели самолета заключается в том, что при моторном полете (с работающим вин­том) возникают новые явле­ния, которые не наблюдались при планирующем полете. Вы­делим основные из них, опи­шем их признаки и при­чины.
Модель, планирующая по прямой, кружит в моторном полете, стремясь повернуть в левую сторону (вращение вин­та вправо по направлению полета). Это происходит из-за влияния силы реакции от вра­щения винта. Величина дан­ной силы связана жесткой зависимостью с частотой его вращения и диаметром винта. Авиамоделисты      исправляют этот дефект смещением вала винта вправо или отклонением киля в эту же сторону.
Модель может кружиться также из-за несимметрии масс, различной кривизны профиля нервюр у обеих половин кры­ла и по другим причинам.
При малой закрутке рези­нового двигателя модель летит хорошо, а при большой не набирает высоты. Причина — слабая рейка-фюзеляж, когда сильно закрученный двигатель сгибает рейку. В этом случае рекомендуется поставить свер­ху ее растяжки или заменить более прочной.
Как уже упоминалось ра­нее, иногда модель в мотор­ном полете трясет, и чем боль­ше закрутка резинового двига­теля, тем сильнее. В этом слу­чае сказывается дисбаланс ло­пастей воздушного винта или неверный изгиб крючка вала винта.
Если после запуска модель стремительно набирает высоту и пытается сделать петлю, необходимо сместить вал вин­та вниз. А если модель мед­ленно набирает высоту, пере­мещают вал винта вверх.
Регулировать моторный по­лет лучше смещением вала винта, а планирующий — пере­движением крыла вдоль фюзе­ляжа (изменением центровки), изменением угла атаки крыла и поворотом киля.

Распечатать ..

 
Другие новости по теме:

  • Резиномоторная модель са­молета «Малютка»
  • Резиномоторная модель са­молета класса В-1
  • Модель самолета из пено­пласта
  • Фюзеляжная модель самолета с резиновым двигателем
  • Модель планера «Малыш»


  • Rambler's Top100
    © 2009