» Вертолет (геликоптер) Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несущим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без разбега, зависать в воздухе, лететь в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппарат ...
» Игры и соревнования Одно из доступных и простых — соревнование иа время полета моделей с парашютом. Если позволяют условия, можно проводить несколько запусков-туров, если нет — ограничиться одним. Продолжительность фиксируемого полета — время с момента взлета модели до момента посадки или до того момента, когда она скроется из поля зрения. Участник, модель которого покажет нан-большее время пол ...
» Шкалы навигационной линейки и их назначение Навигационная линейка имеет не равномерные шкалы, а логарифмические. При решении задач с помощью НЛ-10М используется одновременно две, а иногда и больше шкал, которые называются смежными.
» Модель вертолета «Белка» Модель вертолета «Белка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние лопасти закрепляют на раме, служащей одновременно фюзеляжем. Раму изготовляют из двух липовых пластин размером 220 Х 10 Х 1 мм, верхней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две других посредст ...
» Работа с картой Определение координат пункта по карте. В практике самолетовождения приходится производить некоторые расчеты по географическим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1) провести через заданный пункт отрезки прямых, параллельных ближайшей параллели и ближайшему меридиану; 2) в точках пересеч ...
» Основные правила самолетовождения - Порядок выполнения маршрутного полета Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установленным маршрутам. В основе успешного выполнения полетов лежит строгое соблюдение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1) сохранять ориентировку в течение вс ...
» Дальность полета Цель данной игры — достижение наибольшей дальности полета. Перед началом надо оговорить, сколько раз каждый участник будет запускать свою модель, иными словами, сколько будет зачетных полетов (обычно — три). А перед ними надо дать возможность совершить один-два тренировочных (пристрелочных) запуска. Очередность выхода на старт обычно определяют жеребьевкой.
» Правила ведения визуальной ориентировки При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было подобным расположению ориентиров на местности. 2. Сочетать визуальную ориентировку с прокладкой пути, чтобы создать благоприятные условия для сличения карты с местностью в районе предполагаемого местонахо ...
» Назначение и принцип устройства навигационной линейки НЛ-10М Навигационная линейка НЛ-10М является счетным инструментом пилота и штурмана и предназначена для выполнения необходимых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...
» Змей-дельтаплан Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно состоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают пополам и закрепляют булавками. Выше диагонали на 40 мм (припуск на швы) проводят параллельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...
» Определение навигационных элементов с помощью РСБН-2 РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж может определить ветер, по которому в случае необходимости выполняются расчеты для обеспечения самолетовождения за пределами рабочей области системы.
» Классификация ориентиров и их главные отличительные признаки Визуальная ориентировка ведется по земным ориентирам. Ориентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем ландшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и точечные.
» Сущность истинного пеленга (ИП) и взаимозависимость пеленгов Для контроля пути по дальности и определения места самолета запрашиваются истинные пеленги. Запрос пеленгов в телеграфном режиме осуществляется кодовым выражением ЩТЕ, в телефонном режиме — словами «Дайте истинный пеленг». Истинным пеленгом (ЩТЕ) называется угол, заключенный между северным направлением истинного меридиана, проходящего через радиопеленгатор, и ортодромическим направлением на ...
» Сборные таблицы, подбор и склеивание необходимых листов карт Сборные таблицы предназначены для подбора нужных листов карт и быстрого определения их номенклатуры. Они представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов карт одного, а иногда двух-трех масштабов. Для облегчения выбора нужных листов карт на сборных таблицах указаны названия крупных городов. Сборные таблицы издаются на отдельных листах. ...
» Ручка управления с фиксатором Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее освоить этот прием, применяют ручку управления, которая фиксируется на предплечье небольшим хомутом (рис. 67).
» Модель ракеты «Пионер» Модель ракеты «Пионер» (рис. 59) снаряжается двигателем МРД 10-8-4. Технология ее изготовления немного отличается от предыдущей. Корпус клеят из плотной бумаги в два слоя на оправке диаметром 55 мм. Четыре стабилизатора вырезают из пластины пенопласта ПС-4-40 толщиной 5 мм, профилируют и оклеивают писчей бумагой. После высыхания их обрабатывают шлифовальной шкуркой и клеем ПВА крепят вс ...
» Пенопласт в авиамоделизме В конструкции многих моделей, предлагаемых в этой книге, применяют пенопласт. Поэтому логичным будет предложить некоторые практические советы по работе с ним. Пенопласт — вспененный полистирол нли полихлорвинил, обладает низкой плотностью и большими возможностями. Для изготовления авиамоделей применяют в основном пенопласт марки ПС (полистирольный), ПХВ (полихлорвиниловый) и упаковоч ...
» Длина дуги меридиана, экватора и параллели Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему равна длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) = = =111 км. 1ґ дуги меридиана (экватора) = = 1,852 км = 1852 м.
» Модель самолета из пенопласта Модель самолета из пенопласта (рис. 28) разработана авиамоделистами СЮТ г. Электростали. За основу взят чертеж модели самолета «Вилга-2» и полумакет чехословацких моделистов, изготовленный из бальзы. Строительный материал для этого микросамолета — пенопласт (упаковочный или ПС-4-40).
» Определение места самолета Место самолета при помощи наземного радиолокатора определяется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1) запросить у диспетчера место самолета; 2) получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3) отложить на карте от радиолокатора полученный азимут и дальность на линии азимута.
» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ... Радиотехническая система ближней навигации РСБН-2 предназначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением самолетов с земли. Появление этой системы явилось большим достижением на пути автоматизации полета, обеспечения высокой точности самолетовождения и безопасности полетов.
» Заполнение штурманского бортового журнала в полете и записи на карте В процессе выполнения полета штурман выполняет различные навигационные расчеты и измерения. Так как запомнить результаты всех расчетов и измерений невозможно, штурман записывает их в бортовом журнале, а некоторые отмечает на карте. В бортовом журнале и на карте рекомендуется четко и быстро записывать только те данные, которые нужны для определения навигационных элементов полета, контроля и испра ...
» Предотвращение случаев потери ориентировки Для достижения безопасности самолетовождения экипаж обязан в течение всего полета сохранять ориентировку, т. е. знать местонахождение самолета. Современные средства самолетовождения обеспечивают сохранение ориентировки при полетах, как днем, так и ночью. Однако практика показывает, что еще встречаются случаи потери ориентировки. Это вызывает необходимость изучения ее причин и действий экипажа п ...
» Проверка правильности остаточной радиодевиации в полете В полетах штурман должен использовать каждую возможность для проверки правильности остаточной радиодевиации. Наиболее простой и удобный способ проверки — это сравнение фактического и полученного по радиокомпасу пеленгов радиостанции. Для этого необходимо:
» Ортодромия и локсодромия
Путь самолета между двумя заданными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прокладки пути зависит от оснащенности самолета навигационным оборудованием. Каждая из указанных линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверхности земного шара (рис. ...
» Резиномоторная модель самолета «Малютка» Резиномоторная модель самолета «Малютка» (рис. 27). Эту схематическую модель самолета сконструировал М. С. Степаненко, один из ветеранов советского авиамоделизма. Главное ее достоинство — простота изготовления. Необходимый для постройки материал: сосновые рейки, немного стальной проволоки диаметром 0,6 мм, папиросная и чертежная бумага, резиновая нить сечением 1X 1 мм длиной около ...
» Авторотация несущего винта-ротора Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс ...
» Модель конструкции Г. Безрука Модель конструкции Г. Безрука (рис. 37). С этой моделью ее создатель успешно выступал на соревнованиях по воздушному бою во Всероссийском пионерском лагере «Орленок». Простота в изготовлении, неплохая скорость и маневренность — вот главные качества модели.
» Схематическая модель планера разработана алма-атинскими авиамоделистами Схематическая модель планера (рис. 23) разработана алма-атинскими авиамоделистами. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный паритель фитильным приспособлением для принудительной посадки. Постройку такой «схематички» начинают с крыла. Прежде всего заготовки кромок изготавливают с помощью специально изготовленного приспособлени ...
Устанавливая микродвигатели с передним распределением на модели воздушного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у моторов, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жиклер. Выход из этого положения весьма прост: достаточно выпилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный предохранитель, и установить его под одну из лапок двигателя. Деталька нехитрая, и сделать ее совсем нетрудно, но она существенно продлит жизиь мотору.
Оплетка для троса (рис. 64). Много хлопот доставляет неопытным моделистам-кордови-кам проблема вывода тросов управления из крыла. Случайный их перегиб — и заедание в системе управления почти всегда грозит аварией для летательного аппарата. Один из самых просты и эффективных способов, позволяющих избежать, подобных неприятностей,— использование спиральных пружин, вклеенных в законцовку крыла и выступающих из нее на 12—20 мм. Они обеспечивают легкий ход тросов управления и предохраняют их от перегибов.
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важнейших факторов успешного полета. Немаловажное значение имеет и то, как подвешены рули высоты и закрылки. Отсутствие люфтов, легкость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомендовали себя шарниры, изготовленные из обычных капроновых нитей диаметром около 0,15 мм.
Как известно, свой самый первый полет курсант выполняет не один, а вдвоем с инструктором на самолете с двойным управлением. Сначала управляет инструктор, а обучаемый лишь слегка придерживает ручку и запоминает необходимые для полета манипуляции. И лишь на следующем этапе инициатива переходит к ученику. Однако инструктор и тут всегда начеку — в критической ситуации он всегда может вмешаться в управление.
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее освоить этот прием, применяют ручку управления, которая фиксируется на предплечье небольшим хомутом (рис. 67).
Механизация крыла учебной модели (рис. 68). Три палки — две струны... Так моделисты в шутку говорят об учебных моделях. Те и в самом деле, как правило, цельнодеревянные: и крыло, и фюзеляж, и стабилизатор с килем — из липовых пластин. Конечно, такие аппараты просты. Это их достоинство. Но, к сожалению, их летные качества оставляют желать лучшего — высокая удельная нагрузка на крыло позволяет выполнять лишь горизонтальный полет. Можно, однако, без существенного усложнения модели резко улучшить ее пилотажные качества. Это достигается полной механизацией крыла, оснащением его отклоняемыми предкрылками и закрылками. Сделать это совсем несложно.
Основным документом, регламентирующим постройку авиационных летающих моделей, своеобразным сводом законов являются «Правила проведения соревнований по авиамодельному спорту в СССР». В основе этих Правил — положения кодекса ФАИ — технические требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены следующие категории авиационных моделей.
Модель планера — модель летательного аппарата, не обеспеченная собственной силой тяги, у которой подъемная сила образуется аэродинамическими силами, действующими на неподвижно закрепленные поверхности. Запускают при помощи леера не длиннее 50 м. Технические требования: площадь несущей поверхности — 32—34 дм2, минимальная масса — 410 г, максимальная удельная грузоподъемность — 50 г/дм2. Резиномоторная модель — модель летательного аппарата, снабженная эластичным двигателем, у которого подъемная сила образуется аэродинамическими силами, действующими на неподвижно закрепленные поверхности. Технические требования: площадь несущей поверхности— 17—19 дм2, минимальная масса без двигателя — 190 г, максимальная удельная грузоподъемность — 50 г/дм2, максимальная масса двигателя — 40 г.
В ракетомодельном спорте, также как и в авиамодельном, правила соревнований вырабатывает соответствующая международная федерация. Национальные федерации, принимая свой спортивный кодекс, стараются дублировать международные правила — раздел «Космические модели» кодекса ФАИ. Но каждая страна вправе внести какие-либо нововведения, уточнения, не изменяя при этом основополагающие требования, служащие безопасным запуском моделей. Общие требования к моделям ракет таковы: число работающих ступеней — не более трех, максимальный суммарный импульс двигателей — 80 Н- с, стартовая масса — не более 500 г, для моделей-копий категории S7 — не более 750 г, максимальная масса топлива в двигателях — 125 г.
Автожир представляет собой летательную машину тяжелее воздуха, С точки зрения конструкции автожир можно назвать самолетом с вращающейся несущей поверхностью, так как последней является авторотирующий (свободно вращающийся) винт-ротор большого диаметра и малого геометрического шага, расположенный над фюзеляжем так, что ось его нормальна (или близка к нормали) оси фюзеляжа. Авторотирует винт-ротор от воздействия потока воздуха, возникающего при движении машины. Необходимая тяга для сообщения автожиру поступательного движения создается винтомоторной группой, ничем не отличающейся от винтомоторной группы самолета. Автиротирующий винт-ротор, как несущая поверхность, выгодно отличается от неподвижного крыла прежде всего тем, что он не имеет на больших углах атаки критического состояния, обусловленного у неподвижного крыла нарушением обтекания профиля (срыв струй). Это обстоятельство делает автожир гораздо безопаснее самолета. Так, если при потере скорости самолет, теряя подъемную силу и управляемость, беспорядочно падает или переходит в штопор, то у автожира его несущая поверхность – ротор - при потере скорости не сразу перестает вращаться в силу инерции; уменьшение же подъемной силы ротора, вызванное потерей скорости и оборотов, заставит автожир перейти в парашютирующий спуск, при котором восстановятся и обороты и подъемная сила ротора. Так как ротор автожира в полете все время находится в состоянии вращения, то наиболее эффективные сечения его лопастей даже при малых поступательных скоростях автожира имеют относительные скорости, достаточные по величине для того, чтобы ротор развивал подъемную силу, равную весу машины.
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна к нему под некоторым углом i (рис. 1), при винте с жестким креплением лопастей появляются значительные по величине опрокидывающие моменты - поперечный, относительно оси xx, и продольный, относительно оси zz, стремящиеся опрокинуть аппарат на бок и назад.
Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом потоке и частично затрагивающих авторотирующие винты, однако все они, за исключением указанных работ Глауэрта и Локка, рассматривают работу авторотирующих винтов с лопастями, не имеющими махового движения, и, стало быть, не вполне аналогичную с работой ротора автожира.
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутствии достаточной скорости вращения закинуться вверх под действием подъемной силы ввиду недостаточной величины распрямляющей их центробежной силы.
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда и угол установки по длине лопасти берутся постоянными, хотя в действительности конец лопасти обычно имеет закругление, а близко у корня хорда уменьшается. Изменение хорды и угла установки вдоль лопасти по какой-либо другой зависимости от радиуса не отразятся на методе расчета, но значительно усложнит его.
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.
Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежащую в плоскости вращения V cos i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя из следующих соображений. Согласно теореме о количестве движения направление индуктивной скорости будет прямо противоположно направлению полной аэродинамической силы ротора, а так как главным компонентом последней является тяга, силы Н и S малы по сравнению с Tk, то, стало быть, можно считать, что индуктивная скорость направлена по оси ротора.
Рассмотрим скорость воздуха относительно элемента лопасти dr, отстоящего от оси ротора на расстоянии r; лопасть имеет угловое положение ψ и угол взмаха β. Взятый элемент кроме скоростей, имеет еще угловую скорость вращения Ω вокруг оси ротора и угловую скорость махового движения . Относительную скорость воздуха у элемента разложим на две составляющих: на радиальную, направленную по продольной оси лопасти, и на лежащую в плоскости, нормальной к продольной оси
Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.