www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Штурманская подготовка и правила выполнения полет » Предполетная штурманская подготовка
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Работа с картой
Определение координат пункта по карте. В практике самолето­вождения приходится производить некоторые расчеты по географи­ческим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1)  провести через заданный пункт отрезки прямых, параллель­ных ближайшей параллели и ближайшему меридиану; 2)  в точках пересеч ...

» Сравнение ротора автожира и крыла самолета
На фиг. 70 даны характеристика ротора, имеющего параметры А = 3, δ = 0,006, γ = 10, Θ = 2˚, k=1,0 и характеристика монопланного крыла, имеющего размах, равный диаметру ротора, и относительное удлинение λ = 6. Крыло имеет тот же профиль что и лопасть ротора автожира (Геттинген429),причем коэффициент подъемной силы крыла в целях сравнения отнесен к площади круга отметае ...

» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Использование КС-6 в полете
Курсовая система позволяет выполнять полеты с локсодроми­ческими и ортодромическими путевыми углами. Полеты по локсо­дромии рекомендуются в умеренном и тропическом поясах при ус­ловии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен ...

» Вертолет (геликоптер)
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несу­щим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без раз­бега, зависать в воздухе, ле­теть в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппа­рат ...

» Кордовая модель воздушного боя А. Сырятова
Модель воздушного боя, Разработанная А. Сырятовым (рис. 40), наглядное подтверж­дение тому, что пенопласт с Успехом может заменить такой традиционный материал, как бальза.Несмотря на внешнюю про­стоту — прямоугольное в пла-не крыло, вынесенный на ко­роткой балке руль высоты, модели ижевского спортсмена присущи хорошие пилотажные Качества.   Построить  ее  сможет почти каждый авиамоде­лист &m ...

» Моменты на головке ротора
На головке ротора при установившемся режиме полета помимо сил T, H и S будут моменты относительно осей zz u хх (оси проходят через центр втулки), так как при наличии расстояния е (фиг. 84) равнодействующая аэродинамических сил ротора не проходит через центр втулки.  

» Наука о точном, надежном и безопасном вождении воздушных судов
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую. Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Расчет максимальной дальности рубежа возврата на аэродром вылета и на запасные аэродромы
Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может слу ...

» Навигационное использование системы «Трасса»
Система «Трасса» может быть использована в следующих ре­жимах: «ДИСС», «Память» и автономный режим работы нави­гационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а)   Перед   вылетом:  1.  Установить  на  щитке управления левый  переключатель в положение  «Выключено», а  правый  — в положение «Суша»  (при полете над водной пове ...

» Видоизмененная поликоническая (международная) проекция
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1 : 1 000 000. Строится она по особому закону, принятому международным соглашением.

» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Прямоугольный коробчатый змей Л. Харграва
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью. Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной ...

» Сущность картографических проекций и их классификация
Способ изображения земной поверхности на плоскости назы­вается картографической проекцией. Существует много способов изображения земной поверхности на плоскости. Сущность любой картографической проекции состоит в том, что поверхность земного шара переносится сначала на глобус опреде­ленного размера, а затем с глобуса по намеченному способу на плоскость.

» Расчет времени и места начала снижения
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром. Рис. 5.6. Расчет времени набора высоты  

» Ракетомодельный спорт
В ракетомодельном спорте, также как и в авиамодельном, правила соревнований вырабатывает соответствующая меж­дународная федерация. Нацио­нальные федерации, принимая свой спортивный кодекс, стара­ются дублировать международ­ные правила — раздел «Косми­ческие модели» кодекса ФАИ. Но каждая страна вправе внес­ти какие-либо нововведения, уточнения, не изменяя при этом основополагающие требования ...

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» Использование НИ-50БМ для счисления пути
При радиолокационной ориентировке для счисления пути по дальности может быть использован НИ-50БМ, для чего необхо­димо: 1.  На подобранном курсе следования одним из возможных ме­тодов определить путевую скорость самолета. 2.  На  автомате курса и задатчике ветра установить МУК = ЗМПУ. 3.  На задатчике ветра установить НВ=МУК, если W>V, или НВ=МУК±180°, если  W

» Контроль и исправление пути
При выполнении полета вследствие изменения ветра, неточного выдерживания заданного режима полета и ошибок в навигацион­ных измерениях и расчетах самолет может уклониться от ЛЗП и выйти на заданные пункты маршрута в неназначенное время. В целях точного следования по заданной трассе (маршруту) и точного по времени выхода на контрольные ориентиры, поворот­ные пункты и аэродром посадки, экипаж в проце ...

» Расчет истинной и приборной воздушной скорости в уме
В полете не всегда имеется возможность рассчитать воздуш­ную скорость с помощью навигационной линейки. Поэтому необ­ходимо уметь приближенно рассчитать скорость в уме. Кроме то­го, такой расчет позволяет контролировать правильность инстру­ментальных, вычислений и тем самым предотвращать в них гру­бые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Определение места самолета
Место самолета при помощи наземного радиолокатора опреде­ляется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1)   запросить у диспетчера место самолета; 2)   получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3)   отложить  на  карте от  радиолокатора  полученный   азимут и дальность на линии азимута.

» Игры и соревнования с моде­лями планеров
Соревнования — это итог ра­боты каждого авиамоделиста. В них проверяется не толь­ко качество моделей, но и умение их конструкторов ис­пользовать полученные знания. В практике авиационного мо­делизма широко известны не только соревнования, но и игры, особенно с бумажными моделями. Перед началом стартов все участвующие в них планеры необходимо над­писать — сделать опознава­тельные знаки. ...

» Модель планера А-1 «Пионер»
Модель планера А-1 «Пио­нер» (рис. 26). Данный планер относится к категории спортив­ных моделей и существенно отличается от описанных ранее. С ним можно выступать на соревнованиях почти всех ран­гов и выполнять нормативы для присвоения спортивных разрядов. Разумеется, изготов­ление такой модели под силу лишь авиамоделистам, имею­щим опыт конструирования и определенные навыки в ра­боте. Для построй ...

» Деление данного числа на тригонометрические функции углов
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов. Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение задан­ного угла α шкалы 3 (при делении числа на синус угла) или угл ...

» Предотвращение случаев попаданий самолетов в зоны с особым режимом полетов
Над территорией СССР установлены определенные режимы полетов, обеспечивающие безопасность полетов по трассам, в воздушных зонах крупных центров страны и в районах аэродро­мов, а также предотвращающие случаи нарушения экипажами самолетов государственной границы Союза ССР и позволяющие осуществлять контроль за полетами самолетов.

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и ука­затели: 1.  Щиток управления системой. 2.  Указатель угла сноса и путевой скорости. 3.  Задатчик угла карты, 4.  Счетчик координат. 5.  Переключатель «ДИСС—АНУ». 6.  Переключатель «Счетчик» («Вкл.—Выкл.»). 7.  Задатчик ветра.

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Предполетная штурманская подготовка
Самолетовождение » Штурманская подготовка и правила выполнения полет  |   Просмотров: 8009  
 
Предполетная штурманская подготовка организуется и про­водится командиром корабля перед каждым полетом с учетом конкретной навигационной обстановки и метеорологических ус­ловий, складывающихся непосредственно перед вылетом. В этот период каждый член экипажа выполняет по своей специально­сти перечень обязательных действий в соответствии с Инструк­цией по организации и технологии предполетной подготовки эки­пажей транспортных самолетов.
К предполетной подготовке экипаж должен приступить не позже чем за час до намеченного времени вылета, а в промежу­точных аэропортах при кратковременных стоянках — с момента явки экипажа в АДП после посадки.
В результате предполетной подготовки должна быть обеспе­чена готовность к вылету экипажа, самолета и его оборудования.
Предполетная штурманская подготовка включает:
1.  Изучение метеорологической обстановки   и   прогноза   пого­ды по маршруту полета, а также в   районах основных и запасных аэродромов.
2.  Изучение   навигационной  обстановки   и  ознакомление предупреждениями службы  аэронавигационной информации.
3.  Определение наивыгоднейшей высоты и эшелона   полета, ре­жима полета, потребного количества топлива и допустимой загруз­ки.
4.  Расчет нижних безопасных эшелонов (при полете на эше­лоне) или безопасных высот полета по прибору (при полете ниже нижнего эшелона) и
получение от диспетчера указаний о высоте (эшелоне) полета и порядке набора заданной вы­соты.
5.  Расчет элементов полета   по этапам   маршрута   по   прогно­стическому ветру, удаления рубежей возврата   на аэродром   вы­лета и запасные аэродромы, внесение   данных   предполетного ра­счета в штурманский бортовой журнал.
6.  Расчет длины разбега и центровки самолета.
7.  Сверку сборников   аэронавигационной   информации с конт­рольными экземплярами.
8.  Сличение показаний личных   и бортовых   часов   с   показа­ниями контрольных часов.
9.  Штурманский контроль готовности экипажа к полету.
10.  Осмотр навигационного и навигационно-пилотажного   обо­рудования самолета и подготовка его к полету.
Изучение метеорологической обстановки. Метеорологическая обстановка изучается в полосе шириной не менее чем по 200 км в обе стороны от линии пути.
На метеостанции экипаж обязан получить подробную консуль­тацию и ознакомиться:
а)   с фактической погодой на  аэродромах вылета,  посадки и на запасных аэродромах;
б)   с прогнозом погоды  на аэродроме и прогнозом  ветра по высотам;
в)  с прогнозом погоды на аэродроме посадки на период, соответствующий расчетному времени прибытия, а также прогноза­ми на запасных аэродромах.
Необходимо особое внимание обращать на возможность из­менения погоды и возникновения опасных метеорологических яв­лений.
В результате ознакомления, консультации и изучения метео­рологической обстановки экипаж должен знать:
1)   расположение  высотных  и приземных  барических образо­ваний, фронтальных разделов и связанные с ними условия пого­ды, возможности обхода и пересечения районов с опасными для полета метеорологическими явлениями;
2)   высоту и наклон тропопаузы;
3)   направление струйных течений и их скорость;
4) расположение относительно маршрута теплых и  холодных воздушных масс.
Определение наивыгоднейшей высоты и эшелона полета (для самолета Ан-24). Наивыгоднейшей называется высота полета, обеспечивающая минимальную себестоимость перевозок. Наивыгоднейшая высота зависит от расстояния между аэродро­мами взлета и посадки, распределения ветра на маршруте по вы­сотам и взлетного веса самолета. При безветрии или постоянном ветре на всех высотах для са­молета Ан-24 наивыгоднейшая высота зависит от расстояния между аэродромами взлета и посадки.
Высоту более 7000 м следует избегать из-за падения давления 8 пассажирской кабине ниже допустимого. Высоту до 8000 м можно использовать лишь при пролете грозового фронта сверху.
При наличии данных о ветре по высотам наивыгоднейшая вы­сота выбирается с учетом ветра и рекомендованных выше наивы­годнейших высот.
Расчет  элементов полета. Расчет элементов полета во время предполетной штурманской подготовки включает:
1)  определение углов сноса, магнитных курсов, путевых ско­ростей и времени полета для каждого участка маршрута;
2)  определение общей продолжительности полета;
3) определение режима работы двигателей и потребного запаса топлива;
4)  расчет рубежей возврата на аэродром   вылета   и   запасные аэродромы;
5)    определение безопасных высот и нижних безопасных эше­лонов.
Для самолета Ан-24 навигационные данные на первом участке маршрута принято рассчитывать по средней истинной воздушной скорости, т. е. скорости с учетом набора высоты. В этом случае бе­рется следующая средняя истинная воздушная скорость при набо­ре высоты:
а) при длине первого участка до 130 км Vи cp =330 км/ч;
б) при длине первого участка до 200 км Vи cp=380 км/ч;
в) при длине первого участка до 250 км Vи cp =400 км/ч.
На остальных участках маршрута расчет производят по задан­ной истинной скорости горизонтального полета.
Определение расхода топлива по участкам маршрута, остатка топлива для поворотных пунктов маршрута и общего запаса топ­лива по данным расхода на участках маршрута. Для самолета Ан-24 расход топлива по участкам маршрута рассчитывается по следующим данным:
1.  На первом участке маршрута — по часовому расходу топли­ва, установленному в зависимости от длины участка:
а)   при длине до 130 км Q = 1000 кг/ч:,
б)   при длине до 250 км Q=900 кг/ч;
2.  На втором и последующих участках и на снижении расход топлива определяется по часовому расходу   топлива,   взятого из крейсерской таблицы для режима горизонтального полета.
3.  Расход топлива на земле — 100 кг.
4.  Расход топлива на взлет и посадку — 150 кг.
Кроме расчетного количества топлива, необходимого для вы­полнения полета до аэродрома посадки, на каждом воздушном суд­не должен быть навигационный запас топлива. С определения это­го запаса обычно начинают расчет потребного количества топлива.
На основании необходимого навигационного запаса топлива и полученного расхода топлива по участкам маршрута определяют расчетный остаток топлива для каждого ППМ. Определение рас­четных остатков топлива начинают от аэродрома посадки, после­довательно прибавляя расход топлива по участкам маршрута к предыдущему остатку. Расчетные остатки топлива для ППМ запи­сываются в штурманском бортовом журнале в графе «Расчетный остаток топлива».
Общий запас топлива, необходимый для выполнения рейса, по данным расхода на участках маршрута, определяется по формуле
Qобщ =Q н.з + Qмаршр + Qвзл. и пос + Qзем + Qнев.ост
где Q н.з — навигационный запас топлива — резерв топлива сверх расчетного количества, необходимого для полета до аэродрома посадки на случай изменения плана полета, вызванного усиле­нием встречного ветра, отклонением от утвержденного марш рута, направлением на запасный аэродром и другими обстоя­тельствами; Qмаршр — количество топлива, расходуемого в по­лете от ИПМ до КПМ, которое определяется как сумма рас­ходов топлива по участкам маршрута; Qзem — количество топ­лива, расходуемого двигателями на земле при прогреве, опро­бовании и рулении (100 кг); Qвзл и пос — количество топлива расходуемого на взлет (50 кг) и посадку (100 кг); Qневост — невырабатываемый остаток топлива. Для самолета Ан-24 не­вырабатываемый остаток топлива составляет 50 кг. Решение о количестве навигационного запаса топлива в каж­дом отдельном случае принимает командир корабля по согласова­нию с диспетчером -в зависимости от метеорологических условий по трассе, на аэродроме    посадки и расстояний до запасных аэ­родромов.
Навигационный запас топлива должен обеспечить полет воз­душного судна от аэродрома посадки (с высоты принятия реше­ния) до запасного аэродрома и полет в течение 30 мин для захо­да на посадку.
Во всех случаях навигационный запас топлива для самолетов должен быть не менее чем на 1 ч полета.
Для воздушных судов, выполняющих полеты в глубь централь­ного полярного бассейна и в Антарктиде, навигационный запас топлива должен быть не менее чем на 2 ч полета.
Навигационный запас топлива рассчитывается исходя из сред­них норм расхода топлива у земли и на высоте полета.
Для самолета Ан-24 средняя норма расхода топлива для рас­чета навигационного запаса составляет 800 кг/ч.

Распечатать ..

 
Другие новости по теме:

  • Расчет общего запаса топлива с помощью графика
  • Расчет максимальной дальности рубежа возврата на аэродром вылета и на за ...
  • Назначение штурманского бортового журнала и его заполнение в период подгото ...
  • Порядок работы штурмана при выполнении полета по воздушной трассе
  • Штурманский контроль готовности экипажа к полету


  • Rambler's Top100
    © 2009