www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет » Навигационный треугольник скоростей, его элементы и их взаимозависимость
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Способы определения путевой скорости в полете
Путевая скорость в полете может быть определена одним из следующих способов:1)   по  известному  ветру   (на НЛ-10М,  расчетчике,  ветрочете и в уме);2)   по  времени пролета известного   расстояния   (по отметкам места самолета);3) по времени пролета расстояния, определяемого с помощью самолетного  радиолокатора или радиотехнических систем;4)   по высоте полета и времени пробега визирной точкой и ...

» Планирование и вертикальный спуск автожира
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

» Пеленг и курсовой угол ориентира
Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного ме­ридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часо­вой стрелки от 0 до 360°.

» Деление данного числа на тригонометрические функции углов
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов. Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение задан­ного угла α шкалы 3 (при делении числа на синус угла) или угл ...

» Сущность визуальной ориентировки
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

» Бумажная модель планера «ДОСААФ»
Для изготовления модели планера «ДОСААФ» (рис. 18) кроме бумаги, ножниц, линей­ки и карандаша понадобится еще и клей. Лучше всего при­менять клей ПВА, а бумагу — из   альбомов  для   рисования. С рисунка по клеткам пере­носят форму фюзеляжа на сло­женную вдвое бумажную заго­товку и вырезают его. Затем таким же образом вырезают крыло, груз, лонжерон и киль. На шаблонах частей стрелкой указано ...

» Вывод корд из крыла
Оплетка для троса (рис. 64). Много хлопот доставляет не­опытным моделистам-кордови-кам проблема вывода тросов управления из крыла. Слу­чайный их перегиб — и заеда­ние в системе управления поч­ти всегда грозит аварией для летательного аппарата. Один из самых просты и эффективных способов, поз­воляющих избежать, подобных неприятностей,— использова­ние спиральных пружин, вклеенных в закон ...

» Контроль пути по дальности с помощью боковых радиостанций
Контроль пути по дальности заключается в определении прой­денного от КО или оставшегося до заданного пункта расстояния. С помощью боковых радиостанций эта задача решается следую­щими способами: 1)   пеленгованием   боковой радиостанции и прокладкой ИПС на карте; 2)   выходом на предвычисленный КУР или МПР; 3)   выходом на траверз боковой радиостанции.

» Основные систе­мы и агрегаты самолета
Все современные самолеты сходны по устройству, имеют одни и те же основные систе­мы и агрегаты. Крыло — главная часть самолета — создает подъем­ную силу, удерживающую его в воздухе. У разных само­летов крылья отличаются раз­мерами, формой и числом. Самолет с одним крылом на­зывают монопланом, а имеющий два крыла (одно над   другим) — бипланом. Конструкция крыла зави­сит от типа с ...

» Предотвращение случаев попаданий самолетов в районы с опасными для полетов метеоявлениями
Для предотвращения случаев попадания в районы с опас­ными для полетов метеоявлениями необходимо: 1)   перед полетом тщательно изучить метеообстановку по трас­се и прилегающим к ней районам; 2)   наметить порядок обхода опасных условий погоды; 3)   наблюдать в полете за изменением    погоды,   особенно   за развитием явлений, опасных для полетов; 4)   периодически получать по радио сведения о сос ...

» Списывание девиации на самолетах с ГТД
На самолетах с ГТД датчики дистанционных компасов установ­лены в местах, где, как показали результаты исследований, дейст­вие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА из­дал специальное указание, согласно которому:

» Порядок ведения визуальной ориентировки и точность определения места самолета
Для быстрого и правильного определения места самолета ви­зуальной ориентировкой необходимо соблюдать следующий поря­док: 1.  Определить на карте район вероятного местонахождения са­молета, для чего от последней отметки МС отложить направление полета и пройденное расстояние,    т. е. выполнить    прокладку пути по курсу, скорости и времени полета. 2.  В пределах найденного района выбрать на карте х ...

» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Сущность устранения (компенсации) полукруговой девиации
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

» Требования безопасности самолетовождения
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету
Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным до­кументом, в котором отражаются применяемые способы самолето­вождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Двухмоторный электролет
Двухмоторный электролет был создан в результате даль­нейшего  развития  моделей с электродвигателем. Демон­страционные полеты такого аппарата вызывают большой интерес в любой аудитории, будь то школа или пионерский лагерь; они хорошо смотрятся на слетах, фестивалях и празд­никах. Двухмоторная схема модели позволяет повысить ее энерговооруженность, добить­ся надежности полета на от­крытом воздухе.

» Пользование указателями радиокомпаса
Указатель пилота предназначен только для отсчета КУР по шкале против стрелки указателя. Шкала оцифрована через 30°, цена одного деления раина 5°. Указатель штурмана предназначен для отсчета КУР и пелен­гов радиостанции и самолета. Для отсчета КУР необходимо: 1)   ручкой с надписью КУРС подвести нуль шкалы против не­подвижного треугольного индекса; 2)  отсчитать значение КУР по шкале   против остро ...

» Кордовая модель самолета «Юниор»
Кордовая модель самолета «Юниор» (рис. 32) разрабо­тана для первоначального обу­чения пилотированию моде­лей данной категории. Прежде чем приступить к изготовлению любой модели самолета, и к этой конкретно, надо вычер­тить ее рабочий чертеж. Работу над моделью можно начать с изготовления кры­ла — наиболее сложной дета­ли данного летательного аппа­рата. Крыло модели «Юниор» со­стоит из 10 нер ...

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элеме ...

» Контроль и исправление пути
При выполнении полета вследствие изменения ветра, неточного выдерживания заданного режима полета и ошибок в навигацион­ных измерениях и расчетах самолет может уклониться от ЛЗП и выйти на заданные пункты маршрута в неназначенное время. В целях точного следования по заданной трассе (маршруту) и точного по времени выхода на контрольные ориентиры, поворот­ные пункты и аэродром посадки, экипаж в проце ...

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Особенности самолетовождения в условиях грозовой деятельности
Условия   самолетовождения    в   зоне  грозовой    деятельности. Грозы являются опасными явлениями погоды для авиации. Опас­ность полетов в условиях грозовой деятельности связана с силь­ной турбулентностью воздуха и возможностью попадания мол­нии в самолет, что может вызвать его повреждение, поражение экипажа и вывод из строя оборудования. Наиболее опасными являются фронтальные грозы, которые ох­ ...

» Расчет общего запаса топлива с помощью графика
Для каждого полета рассчитывают количество топлива, необ­ходимое для заправки самолета. При этом исходят из того, что полет по трассе включает в себя следующие этапы: взлет и маневрирование в районе аэродрома взлета для выхо­да на линию заданного пути; набор заданного  эшелона; горизонтальный полет на заданном эшелоне по маршруту; снижение до высоты начала построения маневра захода на по­садку; ма ...

» Прямоугольный коробчатый змей Л. Харграва
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью. Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной ...

» Дирижабли
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого ...

» Учет влияния ветра на полет самолета - Ветер навигационный и метеорологический
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты. С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На ...

» Расчет времени и места начала снижения
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром. Рис. 5.6. Расчет времени набора высоты  

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолетовождение » Навигационные элементы полета и их расчет  |   Просмотров: 47091  
 
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, при полете с боко­вым ветром векторы воздушной скорости, путевой скорости и ско­рости ветра образуют треугольник (рис. 7.3), который называется навигационным треугольником скоростей. Каж­дый вектор характеризуется направлением и величиной.
Вектором воздушной скорости называется направ­ление и скорость движения самолета относительно воздушных масс. Его направление определяется курсом самолета, а величи­на — значением воздушной скорости.
Навигационный треугольник скоростей и его элементы

 
Рис. 7.3. Навигационный треугольник скоростей и его элементы

Вектором путевой скорости называется направление и скорость движения самолета относительно земной поверхности. Его направление определяется путевым углом, а величина — зна­чением путевой скорости.
Вектором ветра называется направление и скорость движения воздушной массы относительно земной поверхности. Его направление определяется направлением ветра, а величина — значением его скорости.
Навигационный треугольник скоростей имеет следующие эле­менты:
МК — магнитный курс самолета;
V — воздушная скорость;
МПУ— магнитный  путевой угол  (может быть заданным —ЗМПУ и фактическим — ФМПУ);
W — путевая скорость;
НВ — навигационное направление ветра;
U — скорость ветра;
УС — угол сноса;
УВ — угол ветра.
Фактическим магнитным путевым углом назы­вается угол, заключенный между северным направлением маг­нитного меридиана и линией фактического пути. Отсчитывается от северного направления магнитного меридиана до линии фак­тического пути по ходу часовой стрелки от 0 до 360°.
Углом сноса называется угол, заключенный между про­дольной осью самолета и линией пути. Отсчитывается от продоль­ной оси самолета до линии пути вправо со знаком плюс и влево со знаком минус.
Углом ветра называется угол, заключенный между линией пути   (фактической или заданной)  и направлением навигационного ветра. Отсчитывается от линии пути до направления ветра по ходу часовой стрелки от 0 до 360°.
Между    элементами   нави­гационного треугольника  ско­ростей существует следующая зависимость:
МК = МПУ - (± УС);  
ОС = V cos УС;
МПУ = МК + (± УС);  
CB = U cos УВ;
УС = МПУ-МК;    W = VсоsУС + UсоsУВ;
УВ = δ ± 180° - МПУ; δ = МПУ + УВ ± 180°.
Так как углы сноса  обычно небольшие,  а  косинусы    малых углов близки к единице, то можно считать, что W ≈ V+UсоsУВ. Приведенные выше формулы используются  для  расчета элемен­тов навигационного треугольника скоростей.
Угол сноса и путевая скорость являются основными нави­гационными элементами, поэтому нужно твердо знать, как они зависят от изменения воздушной скорости, скорости ветра и угла ветра.
Зависимость угла сноса и путевой скорости от воздушной ско­рости самолета. При неизменном ветре и курсе самолета путевая скорость изменяется соответственно изменению воздушной скоро­сти, т. е. с увеличением воздушной скорости путевая скорость ста­новится больше, а с уменьшением — меньше (рис. 7.4). Считают, что изменение воздушной скорости вызывает пропорциональ­ное изменение путевой скорости, т. е. насколько изменилась воз­душная скорость, настолько соответственно изменится и путевая скорость.
 
Зависимость угла сноса и путевой скорости от воздушной ско­рости самолета
 
Угол сноса с возрастанием воздушной скорости уменьшается, а с ее уменьшением — увеличивается.
Зависимость утла сноса и путевой скорости от скорости ветра.
При постоянной воздушной скорости и курсе самолета с увели­чением скорости ветра угол сноса увеличивается, а при ее умень­шении — уменьшается (рис. 7.5).
Путевая скорость при попутном и попутно-боковом ветре с из­менением скорости ветра изменяется так же, как и угол сноса. При встречном и встречно-боковом ветре  с  увеличением  скорости  ветра  путевая  скорость  уменьшается, а с уменьшением —увеличивается.
Зависимость УС и W от изменения скорости ветра
 
 Рис. 7.5. Зависимость УС и W от изменения скорости ветра: а —при попутно-боковом ветре; б —при встречно-боковом ветре

Зависимость угла сноса и путевой скорости от угла ветра. Угол ветра в полете не остается постоянным. Его величина изменяется в полете как вследствие изменения направления вет­ра, так и вследствие изменения направ­ления полета.
Отложим в определенном масштабе вектор воздушной скорости (рис. 7.6).
 
 Зависимость угла сноса и путевой скорости от угла ветра
 
Из конца этого вектора радиусом, рав­ным скорости ветра в том же масштабе, опишем окружность. Если переме­щать вектор ветра по ходу часовой стрелки, то угол ветра будет изме­няться.
Угол сноса и путевая скорость зави­сят от угла ветра следующим образом:
1.  При УВ = 0°     (ветер попутный)
УС=0,W=V+U
2.  При увеличении угла ветра от 0  до 90° угол сноса увеличивается, а пу­тевая скорость уменьшается.
3.  При УВ = 90°  (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной .
4.  При увеличении УВ от 90 до 180° угол сноса и путевая ско­рость уменьшаются.
5.  При УВ = 180° (ветер встречный) УС==0°, a W=V— U.
6.  При увеличении   УВ от 180 до 270° угол    сноса   и путевая скорость увеличиваются.
7.  При УВ = 270° (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной.
8.  При увеличении УВ от 270 до 360° угол сноса уменьшается, а путевая скорость увеличивается.
При решении  большинства  навигационных задач  необходимо ясно представлять, в какую сторону при данном угле ветра будет направлен снос самолета и какова его путевая скорость (боль­ше или меньше воздушной).
 
Правила определения W и знаков УС
 
Рис. 7.7. Правила определения W и знаков УС
 
Изменение угла ветра приводит к следующему изменению уг­ла сноса и путевой скорости (рис. 7.7): при углах ветра 0—180° углы сноса положительные, а при углах ветра 180—360° — отри­цательные; путевая скорость при углах ветра 270—0—90° боль­ше воздушной скорости, а при углах ветра 90—180—270° меньше.
Пример. ЗМПУ=100°;  δ=40°.  Определить,  в    какую   сторону   направлен снос самолета и какова его путевая скорость.
Решение.   1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 40° + 180° — 100° = 120°.
2. Определяем знак угла сноса и путевую скорость. Так как УВ в преде­лах от 0 до 180°, то угол сноса будет положительный, а путевая скорость меньше воздушной.
Максимальным называется угол сноса при углах ветра 90 и 270° (см. рис. 7.6). Его величина определятся по формуле
sinУСмакс=U/V
При современных скоростях полета величина угла сноса обыч­но не превышает 10—20°. Известно, что синусы малых углов мож­но принять равными самим углам, выраженным в радианах. 1 рад—57°,3 или округленно 60°.
На основании этого можно записать, что
sinУСмакс= величина угла сноса
Следовательно,
 величина угла сноса=U/V, откуда УСмакс = величина угла сноса
Из формулы видно, что УС тем больше, чем меньше воздуш­ная скорость полета и чем больше скорость ветра.
Пример.  V=360 км/ч; U=60  км/ч.  Определить  максимальный угол сноса.
Решение.              УСмакс =величина угла сноса  =величина угла сноса =10°
Обычно максимальный угол сноса рассчитывается с помощью НЛ-10М (рис. 7.8).
 
максимальный угол сноса

Распечатать ..

 
Другие новости по теме:

  • Решение навигационного треугольника скоростей
  • Учет влияния ветра на полет самолета - Ветер навигационный и метеорологи ...
  • Скорость полета - Воздушная и путевая скорости
  • Состав оборудования системы «Трасса» и принцип работы навигацио ...
  • Основные сведения о НИ-50БМ


  • Rambler's Top100
    © 2009