www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Девиация компаса и вариация
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к зап ...

» Кордовая модель воздушного боя А. Сырятова
Модель воздушного боя, Разработанная А. Сырятовым (рис. 40), наглядное подтверж­дение тому, что пенопласт с Успехом может заменить такой традиционный материал, как бальза.Несмотря на внешнюю про­стоту — прямоугольное в пла-не крыло, вынесенный на ко­роткой балке руль высоты, модели ижевского спортсмена присущи хорошие пилотажные Качества.   Построить  ее  сможет почти каждый авиамоде­лист &m ...

» Фюзеляжная модель самолета с резиновым двигателем
Фюзеляжная модель само­лета с резиновым двигателем (рис. 30) разработана в авиакружке, которым длительное время руководил автор. Она Посильна тем моделистам, кто имеет опыт авиационного мо­делирования.

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Использование РПСН-2 в режимах «Снос» и «Снос точно»
Режимы «Снос» и «Снос точно» предназначены для определе­ния угла сноса самолета. Первый используется при полетах до вы­соты 5000 м, а второй — при полетах на высотах от 5000 м и бо­лее. Измерение угла сноса основано на использовании эффекта Доп­лера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о ...

» Основные географические понятия - Форма и размеры Земли
На основании многочисленных геодезических измерений уста­новлено, что Земля представляет собой небесное тело, не имеющее простой геометрической формы. За геометрическое тело, близкое к истинной форме Земли, принят геоид. Геоидом называется геометрическое тело, ограниченное ус­ловной (уровенной) поверхностью, которая является продолжени­ем поверхности океанов в их спокойном состоянии. Геоид не имее ...

» Самолетовождение с использованием наземных радиолокаторов - Назначение наземных радиолокаторов и зад ...
Наземные радиолокаторы относятся к смешанным автономным радиотехническим средствам и представляют собой стационарные или передвижные приемопередающие радиотехнические устройст­ва, работающие в импульсном режиме в сантиметровом или метровом диапазоне волн. Они предназначены для контроля за движением самолетов и для решения задач самолетовож­дения. Наземные радиолокаторы с индикаторами кругового обз ...

» Простейший вертолет — «муха»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

» Помещение для занятий авиамоделизмом
Для работы авиамодельного кружка пионерского лагеря необходимо светлое помеще­ние — мастерская площадью 40—45 м2 для размещения 15—20 рабочих мест. Единой схемы организации мастерской не существует, все опреде­ляется возможностями пионер­лагеря. А они не такие уж и большие. Поэтому на прак­тике площадь мастерской обыч­но не превышает 30 м2. Это, конечно, несколько затрудняет рабо ...

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Ромбический коробчатый змей
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами. Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые т ...

» Классификация авиационных карт по назначению
По своему назначению карты, применяемые в гражданской - авиации, делятся: на полетные, применяемые для самолетовождения по трас­сам и маршрутам в районе полетов; на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астроно­мических средств; на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения м ...

» Модель электролета наборной конструкции
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки:   для   кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток ...

» Электролеты
В настоящее время среди авиамоделистов нашей страны все большее распространение получают модели самолетов с электродвигателем — электролеты. Их строят как для свободного полета, так в кор­довом варианте. И если кон­струирование свободнолетающих электролетов дело не­простое, то изготовление кор­довых «электричек» по силам многим любителям малой авиа­ции. Кордовые авиамодели с электродвигателе ...

» Модель вертолета «Пэнни»
Модель вертолета «Пэнни» (рис. 54) разработал амери­канский авиамоделист Д. Буркхем. Этот миниатюрный вер­толет с резиновым мотором снабжен хвостовым винтом и Имеет   автомат  стабилизации. Основой модели является силовая рейка из сосны длиной 114 мм и сечением 5x5 мм. Сбоку приклеивают пластину из пенопласта толщиной 5 мм и закругляют по виду сбоку; получается своеобразный кор­пус модели. Сверху ...

» Курсы самолета
Курсом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета отно­сительно меридиана. Курс самолета может бы ...

» Дальность полета
Цель дан­ной игры — достижение наи­большей дальности полета. Перед началом надо огово­рить, сколько раз каждый участник будет запускать свою модель, иными словами, сколь­ко будет зачетных полетов (обычно — три). А перед ни­ми надо дать возможность совершить один-два трениро­вочных (пристрелочных) за­пуска. Очередность выхода на старт обычно определяют же­ребьевкой.

» Змей-вертушка
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет ...

» Метательные модели плане­ров
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, наб ...

» Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...

» Расчет времени и места догона впереди летящего самолета
Чтобы рассчитать время догона впереди летящего самолета, необходимо знать расстояние между самолетами, путевые скорости и время пролета самолетами контрольного ориентира. Время   догона   впереди летящего   самолета t дог =S/ W2 — W1

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Скорость полета - Воздушная и путевая скорости
Знание скорости полета необходимо как для пилотирования самолета, так и для целей самолетовождения. Полет самолета на скорости ниже минимальной приводит к потере устойчивости и уп­равляемости. Увеличение скорости сверх допустимой связано с опасностью разрушения самолета. Для целей самолетовождения знание скорости полета необходимо для выполнения различных навигационных расчетов.

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Ручка управления с фик­сатором
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее ос­воить этот прием, применяют ручку управления, которая фиксируется на предплечье не­большим  хомутом   (рис.  67).

» Кордовая учебно-тренировочная модель самолета
Кордовая учебно-трениро­вочная модель (рис. 33). По­стройка именно такой модели наиболее оправдана для даль­нейшего знакомства с катего­рией кордовых моделей. Работу над моделью мож­но начать с изготовления ра­бочего чертежа.

» Схематическая модель пла­нера разработана ал­ма-атинскими авиамоделиста­ми
Схематическая модель пла­нера (рис. 23) разработана ал­ма-атинскими авиамоделиста­ми. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный па­ритель фитильным приспособ­лением для принудительной по­садки. Постройку такой «схематич­ки» начинают с крыла. Прежде всего заготовки кромок изго­тавливают с помощью спе­циально изготовленного при­способлени ...

» Предполетная проверка НИ-50БМ
Для проверки НИ-50БМ перед полетом необходимо: 1.  Включить электропитание   прибора   по  переменному  и  по­стоянному току. 2.  Включить и подготовить к работе ГИК.    Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3.  Установить на автомате курса и задатчике ветра МУК=МК самолета. 4.  Ввести в задатчик ветра направлен ...

» Условия плавной работы ротора
Плавность в работе ротора на всех полетных режимах автожира является необходимым требованием, так как неровности и тряска, передаваясь на остальные части машины, будут влиять на прочность конструкции, регулировку ротора и других деталей. За неимением достаточного эксплуатационного опыта придется пока ограничиться предварительными соображениями об условиях плавной работы ротора. Во-первых, ротор до ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 

 Деление данного числа на тригонометрические функции углов
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5836  
 
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов.
Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение задан­ного угла α шкалы 3 (при делении числа на синус угла) или угла 90° — α (при делении числа на косинус α) и против треугольного индекса шкалы 4 отсчитать на шкале 5 искомое частное (рис. 4.5).
Пример. Дан угол α=50°; число равно 250. Определить частное от де­ления 250 на синус и косинус угла 50°.

Читать дальше ..

 Расчет пройденного расстояния, времени полета и путевой скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 11505  
 
Пройденное   расстояние определяется   по формуле
S = Wt,
где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек).
Для определения пройденного расстояния на НЛ-10М необходи­мо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 искомое расстояние в кило­метрах (рис. 4.6).

Читать дальше ..

 Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратно
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 16768  
 
Такая операция осуществляется по формулам:
V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6.
Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2.
Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индекса шкалы 2 отсчитать на шкале 1 искомое значение скорости в кило­метрах в час (рис. 4.8).

Читать дальше ..

 Перевод морских и английских миль в километры и обратно
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9128  
 
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам:
Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.

 Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по шкале 15 кило­метры (рис. 4.9).

Читать дальше ..

 Перевод футов в метры и обратно
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 16866  
 
Футы переводятся в метры, а метры в футы по формулам:
Hм = Hфуты:3,28;
Hфуты = Нм·3,28.
Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

Читать дальше ..

 Классификация высот полета от уровня измерения
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9813  
 
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач.
В самолетовождении в зависимости от уровня начала отсчета различают следующие высоты полета: истинную, абсолютную и барометрическую (рис. 5.1).

Читать дальше ..

 Способы измерения высоты полета
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 12111  
 
Основными способами измерения высоты полета являются ба­рометрический и радиотехнический.
Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно из­меняющегося с высотой. Барометрический высотомер представля­ет собой обыкновенный барометр, у которого вместо шкалы дав­лений поставлена шкала высот. Такой высотомер определяет вы­соту полета самолета косвенным путем, измеряя атмосферное дав­ление, которое изменяется с высотой по определенному за­кону.

Читать дальше ..

 Ошибки барометрических высотомеров
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 10981  
 
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки.
Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый высотомер имеет свои инструментальные ошибки. Они определяются путем проверки высотомера, заносятся в спе­циальную таблицу и учитываются в полете.

Читать дальше ..

 Расчет времени и места набора высоты заданного эшелона
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 12643  
 
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора.
Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна.
Определение времени и места набора высоты заданного эшелона

Рис. 5.5. Определение времени и места набора высоты заданного эшелона

Читать дальше ..

 Расчет времени и места начала снижения
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 16044  
 
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром.

Расчет времени набора высоты

Рис. 5.6. Расчет времени набора высоты
 

Читать дальше ..

 Расчет вертикальной скорости снижения или набора высоты
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 20482  
 
В практике самолетовождения бывают случаи, требующие сме­ны эшелона полета. При необходимости диспетчер указывает эки­пажу время начала и окончания смены эшелона или задает учас­ток, на котором должно быть произведено снижение. На основа­нии указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке.

Читать дальше ..

 Скорость полета - Воздушная и путевая скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 8240  
 
Знание скорости полета необходимо как для пилотирования самолета, так и для целей самолетовождения. Полет самолета на скорости ниже минимальной приводит к потере устойчивости и уп­равляемости. Увеличение скорости сверх допустимой связано с опасностью разрушения самолета. Для целей самолетовождения знание скорости полета необходимо для выполнения различных навигационных расчетов.

Читать дальше ..

 Ошибки указателя воздушной скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 6938  
 
Указатель воздушной скорости имеет инструментальные, аэро­динамические и методические ошибки.
Инструментальные ошибки ΔV возникают по тем же причинам, что и аналогичные ошибки высотомера. Они определяются путем сличения показаний указателя скорости с показания­ми точно выверенного прибора, заносятся в график или таблицу и учитываются при расчете скорости.

Читать дальше ..

 Расчет истинной воздушной скорости по показанию однострелочного указателя скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9018  
 
Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле
Vи= Vпр+(±ΔV) + (±ΔVм),
где Vпр — приборная воздушная скорость; ΔV — инструмен­тальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на из­менение плотности воздуха.

Читать дальше ..

 Расчет приборной воздушной скорости для однострелочного указателя скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5872  
 
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле
Vпр = Vи— (± ΔVм) — (± ΔV).

Читать дальше ..

 Расчет истинной и приборной воздушной скорости в уме
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 18611  
 
В полете не всегда имеется возможность рассчитать воздуш­ную скорость с помощью навигационной линейки. Поэтому необ­ходимо уметь приближенно рассчитать скорость в уме. Кроме то­го, такой расчет позволяет контролировать правильность инстру­ментальных, вычислений и тем самым предотвращать в них гру­бые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к указателю скорости на основ­ных высотах полета. Обычно эти поправки даются в процентах от скорости полета (табл. 6.2).

Читать дальше ..

 Расчет истинной воздушной скорости по показанию широкой стрелки комбинированного указателя скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 7308  
 
На скоростных самолетах для измерения воздушной скорости устанавливается комбинированный указатель скорости КУС-1200. Его широкая стрелка показывает приборную воздушную скорость, а узкая — приближенное значение истинной воздушной скорости.
Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле
Vи = Vпр + ( ± Δ V) + ( ±   Δ Va) +(- Δ Vсж) + ( ± ΔVм),
где Vпр — показание широкой стрелки; ΔV — инструментальная поправка указателя скорости для широкой стрелки; ΔVa — аэродинамическая поправка указателя скорости; ΔVcж — поправка на сжимаемость воздуха; ΔVм— методическая по­правка указателя скорости на изменение плотности воздуха.

Читать дальше ..

 Расчет истинной воздушной скорости по узкой стрелке КУС
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5550  
 
Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высо­той в соответствии со стандартной атмосферой. Поэтому при тем­пературе на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скорость с некоторой погреш­ностью.

Читать дальше ..

 Расчет показания широкой стрелки КУС для заданной истинной скорости
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 4787  
 
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V).
Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

Читать дальше ..

 Учет влияния ветра на полет самолета - Ветер навигационный и метеорологический
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 23796  
 
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты.
С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На больших высо­тах, на которых выполняются полеты самолетов с ГТД, скорость ветра может достигать 200— 300 км/ч и более. Такие ветры глав­ным образом наблюдаются в зоне струйных течений. Отмечены слу­чаи, когда скорость ветра в таких те­чениях составляла 650—750 км/ч.

Читать дальше ..

Rambler's Top100
© 2009