www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Основные географические понятия - Форма и размеры Земли
На основании многочисленных геодезических измерений уста­новлено, что Земля представляет собой небесное тело, не имеющее простой геометрической формы. За геометрическое тело, близкое к истинной форме Земли, принят геоид. Геоидом называется геометрическое тело, ограниченное ус­ловной (уровенной) поверхностью, которая является продолжени­ем поверхности океанов в их спокойном состоянии. Геоид не имее ...

» Метательные модели плане­ров
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, наб ...

» Использование РПСН-2 в режимах «Обзор» и «Дальний обзор»
Эти режимы предназначены для обзора земной поверхности, пе­риодического определения места самолета, определения начала снижения с эшелона и для выполнения маневра захода на по­садку.

» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету
Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным до­кументом, в котором отражаются применяемые способы самолето­вождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Использование РСБН-2 для захода на посадку
РСБН-2 при заходе на посадку позволяет: 1.  Производить «вписывание» самолета  в  установленную для данного аэродрома схему захода на посадку. 2.  Осуществлять контроль  полета по  установленной   схеме. 3.  Выводить самолет в зону курсового радиомаяка.

» Курсы самолета девиация магнитных компасов
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно пр ...

» Определение навигационных элементов на контрольном этапе
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно ...

» Навигационное использование системы «Трасса»
Система «Трасса» может быть использована в следующих ре­жимах: «ДИСС», «Память» и автономный режим работы нави­гационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а)   Перед   вылетом:  1.  Установить  на  щитке управления левый  переключатель в положение  «Выключено», а  правый  — в положение «Суша»  (при полете над водной пове ...

» Учет влияния ветра на полет самолета - Ветер навигационный и метеорологический
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты. С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На ...

» Устройство управляемой ракеты
Несмотря на большое раз­нообразие, все ракеты имеют много общего в своем устрой­стве. Основными частями управляемой ракеты являются полезный груз, корпус, двига­тель, бортовая аппаратура си­стемы управления, органы управления и источники энер­гии. Полезный груз — объект для проведения иссле­дований или других работ, размещается в головном от­секе и прикрывается головным обтекателем. Корпус р ...

» Магнитные поля, действующие на картушку компаса, установленного на самолете
На картушку магнитного компаса, установленного на самолете, действуют следующие поля: 1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану); 2)  постоянное магнитное поле самолета; 3)   переменное магнитное поле самолета; 4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

» Конические проекции
Конические проекции получаются в результате переноса поверх­ности Земли на боковую поверхность конуса, касательного к одной из параллелей или секущего земной шар по двум заданным па­раллелям. Затем конус разрезается по образующей и разворачи­вается на плоскость. Конические проекции в зависимости от распо­ложения оси конуса относительно оси вращения Земли могут быть нормальные, поперечные и косые. ...

» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Кордовая модель самолета «Юниор»
Кордовая модель самолета «Юниор» (рис. 32) разрабо­тана для первоначального обу­чения пилотированию моде­лей данной категории. Прежде чем приступить к изготовлению любой модели самолета, и к этой конкретно, надо вычер­тить ее рабочий чертеж. Работу над моделью можно начать с изготовления кры­ла — наиболее сложной дета­ли данного летательного аппа­рата. Крыло модели «Юниор» со­стоит из 10 нер ...

» Расчет времени и места встречи самолетов, летящих на встречных курсах
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время   сближения самолетов tсбл= S'/ W1 + W2

» Требования безопасности самолетовождения
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

» Расчет пройденного расстояния, времени полета и путевой скорости
Пройденное   расстояние определяется   по формуле S = Wt, где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек). Для определения пройденного расстояния на НЛ-10М необходи­мо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 и ...

» Поликонические проекции
По принципу построения поликонические проекции незначи­тельно отличаются от конических. Они являются дальнейшим усо­вершенствованием конических проекций. В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к парал­лелям или секущих земной шар по заданным параллелям. На по­верхность каждого конуса переносится небольшой шаровой пояс земной ...

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Модель электролета наборной конструкции
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки:   для   кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток ...

» Сборные таблицы, подбор и склеивание необходимых листов карт
Сборные таблицы предназначены для подбора нужных листов карт и быстрого определения их номенклатуры. Они представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов карт одного, а иногда двух-трех масштабов. Для облегчения выбора нужных листов карт на сборных таблицах указаны названия крупных городов. Сборные таблицы издаются на отдельных листах. ...

» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Воздушный шар (аэро­стат)
Воздушный шар (аэро­стат) — летательный аппарат легче воздуха, полет которого объясняется законом Архиме­да: сила, выталкивающая по­груженное в жидкость (или газ) тело, равна весу жидкости (или газа) в объеме этого тела. Данная сила направлена верти­кально вверх и приложена к центру объема погруженной ча­сти тела. Иными словами, аэро­стат поднимается вверх (всплы­вает) благодаря подъемной си ...

» Использование РПСН-2 в режиме «Препятствие»
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, ко ...

» Модель конструкции Г. Без­рука
Модель конструкции Г. Без­рука (рис. 37). С этой моделью ее создатель успешно высту­пал на соревнованиях по воз­душному бою во Всероссий­ском пионерском лагере «Ор­ленок». Простота в изготовле­нии, неплохая скорость и ма­невренность — вот главные ка­чества модели.

» Авторотация несущего винта-ротора
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс ...

» Перевод футов в метры и обратно
Футы переводятся в метры, а метры в футы по формулам: Hм = Hфуты:3,28; Hфуты = Нм·3,28. Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

» Умножение данного числа на тригонометрические функции углов
Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчи­тать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 

 Поликонические проекции
Самолетовождение » Основы авиационной картографии  |    Просмотров: 11126  
 
По принципу построения поликонические проекции незначи­тельно отличаются от конических. Они являются дальнейшим усо­вершенствованием конических проекций.
В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к парал­лелям или секущих земной шар по заданным параллелям. На по­верхность каждого конуса переносится небольшой шаровой пояс земной поверхности (рис. 2.7). Затем каждый конус разрезается по образующей и разворачивается на плоскость. После склеивания полос получается поликоническая проекция.

Читать дальше ..

 Видоизмененная поликоническая (международная) проекция
Самолетовождение » Основы авиационной картографии  |    Просмотров: 11214  
 
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1 : 1 000 000.
Строится она по особому закону, принятому международным соглашением.

Читать дальше ..

 Азимутальные проекции
Самолетовождение » Основы авиационной картографии  |    Просмотров: 16136  
 
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проектирование, называ­ется точкой зрения. Точ­ка касания картинной плоскости к поверхности Земли называется цент­ральной точкой карты.

Читать дальше ..

 Содержание карт
Самолетовождение » Основы авиационной картографии  |    Просмотров: 10017  
 
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами.
На авиационные карты наносятся гидрографические объекты (моря, озера, водохранилища, болота, реки и каналы). Эти эле­менты местности на полетных картах представлены на первом пла­не, поскольку они являются надежными ориентирами. На карты наносятся также крупные населенные пункты, дорожная сеть, рель­еф, растительность и почвенный покров (лесные массивы, луга, бо­лота, пески). Они дают возможность вести в полете визуальную ориентировку или ориентировку с помощью самолетного радиоло­катора и получать данные для самолетовождения и обеспечения безопасности полетов. Кроме того, на авиационных картах изобра­жаются изогоны и магнитные аномалии. На маршрутные и некото­рые полимаршрутные карты, помимо топографических элементов наносится специальная нагрузка, которая включает воздушные трассы с навигационной разметкой, границы РДС и другие данные, необходимые для полетов по установленным трассам.

Читать дальше ..

 Классификация авиационных карт по назначению
Самолетовождение » Основы авиационной картографии  |    Просмотров: 13768  
 
По своему назначению карты, применяемые в гражданской - авиации, делятся:
на полетные, применяемые для самолетовождения по трас­сам и маршрутам в районе полетов;
на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астроно­мических средств;
на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения места само­лета по радиомаякам ВРМ-5 и т. п.).

Читать дальше ..

 Разграфка и номенклатура (обозначение) карт
Самолетовождение » Основы авиационной картографии  |    Просмотров: 15846  
 
Каждая карта издается на отдельных листах, имеющих опреде­ленные размеры по долготе и широте и представляющих части об­щей карты целого государства, материка, всего мира.
Система деления общей карты на отдельные листы называется ее разграфкой, а система обозначения листов — номенкла­турой. Каждому листу карты в зависимости от масштаба по оп­ределенному правилу присваивается свое буквенное и числовое обо­значение, что позволяет легко и быстро подбирать нужные листы карты для их склейки и подготовки к полету.

Читать дальше ..

 Сборные таблицы, подбор и склеивание необходимых листов карт
Самолетовождение » Основы авиационной картографии  |    Просмотров: 12633  
 
Сборные таблицы предназначены для подбора нужных листов карт и быстрого определения их номенклатуры. Они представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов карт одного, а иногда двух-трех масштабов. Для облегчения выбора нужных листов карт на сборных таблицах указаны названия крупных городов. Сборные таблицы издаются на отдельных листах. На борту самолета экипаж обязан иметь полетную и бортовую карты. Подбор необходимых листов этих карт производят в соот­ветствии с полученным заданием.

Читать дальше ..

 Работа с картой
Самолетовождение » Основы авиационной картографии  |    Просмотров: 7761  
 
Определение координат пункта по карте. В практике самолето­вождения приходится производить некоторые расчеты по географи­ческим координатам пунктов или устанавливать эти координаты на различных навигационных приборах.
Для определения координат пункта по карте необходимо:
1)  провести через заданный пункт отрезки прямых, параллель­ных ближайшей параллели и ближайшему меридиану;
2)  в точках пересечения проведенных линий с рамкой карты от­считать широту и долготу данного пункта.

Читать дальше ..

 Курсы самолета девиация магнитных компасов
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 11054  
 
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.
Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно принимают, что северный магнитный полюс, расположенный в северной части Канады, обла­дает южным магнетизмом, т. е. притягивает северный конец маг­нитной стрелки, а южный магнитный полюс, расположенный в Ан­тарктиде, обладает северным магнетизмом, т. е. притягивает к себе южный конец магнитной стрелки (рис. 3.1).

Читать дальше ..

 Девиация компаса и вариация
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 20143  
 
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают.
Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к западу (влево) со знаком минус.

Читать дальше ..

 Курсы самолета
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 42620  
 
Курсом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета отно­сительно меридиана.
Курс самолета может быть истинным, магнитным и компасным в зависимости от меридиана, от которого он отсчитывается.
Истинным курсом ИК называется угол, заключенный между северным направлением истинного меридиана, проходящего через самолет, и продольной осью самолета.

Читать дальше ..

 Путевые углы и способы их определения
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 22824  
 
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7).
Заданным  магнитным путевым   углом   ЗМПУ   называется       угол,     заключенный между северным    направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и измеряется на карте при помощи транспортира по среднему истинному меридиану данного участка маршрута с последующим учетом магнитного склонения.

Читать дальше ..

 Пеленг и курсовой угол ориентира
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 17050  
 
Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного ме­ридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часо­вой стрелки от 0 до 360°.

Читать дальше ..

 Списывание девиации магнитных компасов
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9910  
 
Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвест­на, практически нельзя, так как она может достигать больших зна­чений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, электро- и радиооборудова­ния. Однако эта мера не позволяет полностью устранить девиацию. Поэтому компасы снабжены девиационными приборами, позво­ляющими уменьшить девиацию. Остаточная девиация списывает­ся, заносится в график и учитывается при переводе курсов.

Читать дальше ..

 Магнитные поля, действующие на картушку компаса, установленного на самолете
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 11144  
 
На картушку магнитного компаса, установленного на самолете, действуют следующие поля:
1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану);
2)  постоянное магнитное поле самолета;
3)   переменное магнитное поле самолета;
4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

Читать дальше ..

 Магнитные силы, действующие на стрелку компаса. Формула девиации
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 10408  
 
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил.
1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от курса самолета. Ее величина изменяется с изме­нением магнитной широты места. Эта сила стремится установить стрелку компаса вдоль магнитного меридиана и девиации не вы­зывает (рис. 3.12).

Читать дальше ..

 Сущность устранения (компенсации) полукруговой девиации
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 8392  
 
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

Читать дальше ..

 Назначение и устройство девиационного пеленгатора
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 11959  
 
Девиационный пеленгатор предназначен для определения маг­нитных пеленгов ориентиров, фактического МК самолета и уста­новки последнего на заданный МК. Устройство пеленгатора пока­зано на рис. 3. 15. Визирная рамка 3 состоит из глазного (с про­резью) и предметного (с нитью) диоптров. Она может вращаться вокруг вертикальной оси относительно азимутального лимба 1 или быть застопоренной. С помощью индекса 4 обозначается продоль­ная ось самолета. Уровень 5 служит для установки лимба в гори­зонтальное положение, а шаровой шарнир 7 — для установки в заданном положении. При помощи кронштейна 8 девиационный пе­ленгатор крепится на треноге или на самолете.

Читать дальше ..

 Определение магнитного пеленга ориентира с помощью девиационного пеленгатора
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 7382  
 
Для определения МПО необходимо:
1)  установить треногу в центре площадки, где будет списывать­ся девиация;
2)   закрепить пеленгатор на треноге и установить его в горизон­тальное положение по уровню;
3)   отстопорить лимб и магнитную стрелку;
4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб;
5)   разворачивая визирную рамку и наблюдая через    прорезь глазного диоптра, направить нить предметного диоптра на выбран­ный ориентир;
6)   против риски предметного диоптра по шкале лимба отсчи­тать МПО.
 

Читать дальше ..

 Установка самолета на заданный магнитный курс
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9427  
 
Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как
Δк = МК - КК.
Самолет устанавливается на заданный МК:
1)   пеленгованием продольной оси самолета;
2)   по магнитному пеленгу ориентира.

Читать дальше ..

Rambler's Top100
© 2009