Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_407.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337 Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338 Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339 Основные радионавигационные элементы » Летательные аппараты - Авиационный моделизм и самолетовождение
www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование угломерных радиотехнических систем » Основные радионавигационные элементы
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Самолетовождение с использованием наземных радиопеленгаторов - Задачи самолетовождения, решаемые с ...
Наземный радиопеленгатор — это специальное прием­ное радиотехническое устройство, позволяющее определять нап­равление на самолет, на котором работает передающая радиостан­ция. Данные пеленгации наземного радиопеленгатора могут быть использованы только при наличии двусторонней связи экипажа самолета с землей.

» Заход на посадку по радиолокационной системе РСП
Наземная радиолокационная система посадки РСП является резервным средством для захода на посадку по приборам и при­меняется, как правило, по запросу командира корабля, а в отдель­ных случаях — по требованию диспетчера. При заходе на посадку по системе РСП экипаж обязан маневрирование при подходе к аэродрому и заходе на посадку выполнять по команде диспетчера. Маневрирование осуществляется в ...

» Компенсация радиодевиации
Радиодевиация компенсируется в следующем порядке: 1.  Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки. 2.  Снять скобу с указателя радиодевиаций.

» Определение навигационных элементов на контрольном этапе
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно ...

» Использование КС-6 в полете
Курсовая система позволяет выполнять полеты с локсодроми­ческими и ортодромическими путевыми углами. Полеты по локсо­дромии рекомендуются в умеренном и тропическом поясах при ус­ловии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен ...

» Контроль пути по направлению и дальности
Контроль пути по направлению и дальности может осуществляться с помощью боковых радиолокаторов путем нанесения на карту места самолета по переданным на борт самолета азимуту и дальности. Такой контроль можно осуществить и без прокладки А и Д на карте, что сокращает время на получение необходимых данных контроля пути.

» Списывание девиации на самолетах с ГТД
На самолетах с ГТД датчики дистанционных компасов установ­лены в местах, где, как показали результаты исследований, дейст­вие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА из­дал специальное указание, согласно которому:

» Работа с картой
Определение координат пункта по карте. В практике самолето­вождения приходится производить некоторые расчеты по географи­ческим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1)  провести через заданный пункт отрезки прямых, параллель­ных ближайшей параллели и ближайшему меридиану; 2)  в точках пересеч ...

» Категории и классы летающих моделей
Основным документом, ре­гламентирующим постройку авиационных летающих моде­лей, своеобразным сводом за­конов являются «Правила про­ведения соревнований по авиа­модельному спорту в СССР». В основе этих Правил — поло­жения кодекса ФАИ — техни­ческие требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены сле­дующие категории авиацион­ных моделе ...

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Вертолет (геликоптер)
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несу­щим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без раз­бега, зависать в воздухе, ле­теть в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппа­рат ...

» Скорость полета - Воздушная и путевая скорости
Знание скорости полета необходимо как для пилотирования самолета, так и для целей самолетовождения. Полет самолета на скорости ниже минимальной приводит к потере устойчивости и уп­равляемости. Увеличение скорости сверх допустимой связано с опасностью разрушения самолета. Для целей самолетовождения знание скорости полета необходимо для выполнения различных навигационных расчетов.

» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется отно­сительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса само­лета применяются различные способы отсчета ортодромических пу­тевых углов и курсов самолета, выбор которы ...

» Вывод самолета на запасный аэродром с помощью наземного радиолокатора
Вывод самолета на запасный аэродром с помощью наземного радиолокатора применяется в следующих случаях: 1)   при потере ориентировки экипажем самолета; 2)   при   отказе   радиокомпаса   и  невозможности   использовать другие средства самолетовождения; 3)   при полете в пункт, в котором не имеется радионавигацион­ной точки.

» Основные сведения о НИ-50БМ
В комплект навигационного индикатора входят следующие ос­новные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кро­ме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автомат ...

» Несложный пилотажный змей
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построи ...

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Электролеты
В настоящее время среди авиамоделистов нашей страны все большее распространение получают модели самолетов с электродвигателем — электролеты. Их строят как для свободного полета, так в кор­довом варианте. И если кон­струирование свободнолетающих электролетов дело не­простое, то изготовление кор­довых «электричек» по силам многим любителям малой авиа­ции. Кордовые авиамодели с электродвигателе ...

» Модель воздушного боя «Юниор»
Кордовая модель воздуш­ного боя «Юниор» (рис. 38) разработана под двигатель с рабочим объемом 1,5 см3. Вы­полнена она по схеме «летаю­щее крыло». Основной сило­вой элемент модели — кром­ка-лонжерон. Его выполняют следующим образом: из липы или сосны выстругивают рей­ку сечением 20x3 мм и дли­ной 750 мм, к боковым сто­ронам которой приклеивают еще три рейки сечением 10х 3 мм: с передней &mdas ...

» Сущность визуальной ориентировки
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

» Пилотажная модель «Акро­бат»
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа. Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно корот ...

» Схематическая модель пла­нера разработана ал­ма-атинскими авиамоделиста­ми
Схематическая модель пла­нера (рис. 23) разработана ал­ма-атинскими авиамоделиста­ми. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный па­ритель фитильным приспособ­лением для принудительной по­садки. Постройку такой «схематич­ки» начинают с крыла. Прежде всего заготовки кромок изго­тавливают с помощью спе­циально изготовленного при­способлени ...

» Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высот ...
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

» Ориентирование карты по странам света
Ориентировать карту по странам света — это значит располо­жить ее так, чтобы северные направления истинных меридианов карты были направлены на север. В практике самолетовождения ориентирование карты по странам света осуществляют по компасу или земным ориентирам.

» Кордовая учебно-тренировочная модель самолета
Кордовая учебно-трениро­вочная модель (рис. 33). По­стройка именно такой модели наиболее оправдана для даль­нейшего знакомства с катего­рией кордовых моделей. Работу над моделью мож­но начать с изготовления ра­бочего чертежа.

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету
Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным до­кументом, в котором отражаются применяемые способы самолето­вождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...

» Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэродрома посадки
В тех случаях, когда полет выполняется с ортодромическим кур­сом на аэродром, где горизонтальная составляющая геомагнитно­го поля мала, необходимо до начала снижения с эшелона уста­новить на УШ курс полета самолета относительно магнитного ме­ридиана аэродрома посадки. Для этой цели в режиме «ГПК» уста­навливают УШ на отсчет:ОМКа = МКГ + (± Δм.м.с) + (λа—λм.с) sin φcp ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Основные радионавигационные элементы
Самолетовождение » Использование угломерных радиотехнических систем  |   Просмотров: 44150  
 
Основными радионавигационными элементами при использо­вании радиокомпаса являются:
курсовой угол радиостанции (КУР);
отсчет радиокомпаса (ОРК);
радиодевиация (Δр);
пеленг радиостанции (ПР);
пеленг самолета (ПС).
Курсовым углом радиостанции называется угол, заключенный между продольной осью самолета и действительным (ортодромическим) направлением на радиостанцию. Он отсчитывается от продольной оси самолета по ходу часовой стрелки до направле­ния на радиостанцию от 0 до 360° (рис. 12.3).
 
Основные радионавигационные элементы
 
Курсовой угол радиостанции определяется с помощью радио­компаса и отсчитывается по указателю курсовых углов. Зная ве­личину КУР, можно указать направление на радиостанцию отно­сительно продольной оси самолета. Так, например, если КУР=0°, то радиостанция находится впереди самолета; если КУР=180°— радиостанция позади самолета; если КУР=90° — радиостанция справа под углом 90° к продольной оси самолета.
Зная курсовой угол радиостанции и имея показания магнитно­го компаса, можно решать следующие задачи:
1)   определять положение радиостанции по отношению к про­дольной оси самолета;
2) определять момент пролета контрольного ориентира или поворотного пункта маршрута;
3)  определять момент выхода самолета на ЛЗП;
4)   определять момент пролета радиостанции или ее траверза;
5)  определять пеленг радиостанции и пеленг самолета;
6)   осуществлять контроль за построением маневра при заходе на посадку в сложных метеоусловиях.
 
Отсчетом радиокомпаса называется угол, заключенный между продольной осью самолета и измеренным с помощью радиокомпа­са направлением на радиостанцию (рис.-12.4). Этот угол отсчиты­вается от продольной оси самолета до измеренного направления на радиостанцию от 0 до 360°.
В общем случае ОРК отличается на некоторую величину от действительного значения КУР, т. е. радиокомпас, установленный на самолете, не всегда правильно указывает направление на ра­диостанцию. Эту ошибку радиокомпаса в измерении направления на радиостанцию называют радиодевиацией.
Радиодевиация — это угол, заключенный между измеренным с помощью радиокомпаса и действительным направлениями на ра­диостанцию (см. рис. 12.4). Он отсчитывается от измеренного к действительному направлению на радиостанцию вправо со зна­ком плюс, а влево со знаком минус.
Радиодевиация является величиной переменной, как по знаку, так и по абсолютной величине и зависит от типа самолета, места установки рамочной антенны на самолете, а также от величины КУР.
На современных самолетах радиодевиация достигает 15—20°. Радиодевиация на КУР 0, 90, 180 и 270° равна нулю; на КУР 45, 135, 225 и 315° достигает наибольшего значения.
Для уменьшения радиодевиации в радиокомпасе имеется меха­нический компенсатор. При полностью скомпенсированной радио­девиации указатели радиокомпаса показывают непосредственно курсовой угол радиостанции.
Между КУР, ОРК и радиодевиацией существует следующая взаимозависимость:
КУР=ОРК + (± Δр);
ОРК = КУР-(± Δр);
Δр = КУР - ОРК.
Пример 1. ОРК=45°; Δр = + 15° Определить КУР.
Решение.   КУР=ОРК+ (±ΔР) =45°+ (+15°) =60°.
Пример 2. КУР = 300°; ОРК=310°. Определить радиодевиацию.
Решение.   ΔР=КУР — ОРК=300°—310°= — 10°.
Пеленгом радиостанции называется угол, заключенный меж­ду северным направлением меридиана, проходящего через само­лет, и действительным направлением на радиостанцию. Отсчиты­вается он от северного направления меридиана по ходу часовой стрелки до направления на радиостанцию от 0 до 360°. Пеленг на­зывается магнитным, если отсчет ведется от магнитного мери­диана, и истинным, если отсчет ведется от истинного меридиана (рис. 12.5).
 
Основные радионавигационные элементы
 
Пеленги  радиостанции  рассчитываются  по  формулам:
МПР = МК + КУР;   МПР - КК + ( ± Δк) + КУР;
ИПР = ИК + КУР;    ИПР = МК + (± Δм) + КУР; ИПР = КК + (±Δк) + (±Δм) + КУР;     ИПР = МПР + (±Δм).
При КУР = 0° магнитный пеленг радиостанции МПР = МК.
Пример. КК=100°; Δк = +5°; Δм = + 10°; КУР=50°. Определить МПР и ИПР.
Решение. 1   Находим МК и ИК:
МК = КК + (±Δк) - 100° + (+ 5°) = 105°, ИК = МК + (±Δм) - 105° + (+ 10°) = 115°.
2. Определяем МПР и ИПР:
МПР = МК + КУР = 105° + 50° = 155°;
ИПР = ИК + КУР = 115° + 50° = 165° или
ИПР - МПР + (±Δм) = 155° +(+ 10°) = 165°.
Между курсом, пеленгом и курсовым углом радиостанции су­ществуют следующие зависимости:
МПР = МК + КУР; ИПР = ИК + КУР; МК = МПР - КУР; ИК = ИПР - КУР; КУР = МПР-МК; КУР = ИПР-ИК.
Все эти формулы находят применение в самолетовождении. При решении многих практических задач необходимо помнить, что между курсом и курсовым углом радиостанции существует об­ратная зависимость, т. е. на сколько градусов увеличивается маг­нитный курс, на столько же градусов уменьшается курсовой угол радиостанции и наоборот.
Пример. 1. МПР =200°; МК=50°. Определить КУР. Решение.   КУР=МПР—МК=200°-50°= 150°.
Пример. 2 МПР=240°; КУР=100°. Определить МК. Решение.   МК=МПР—КУР=240°—100°= 140°.
Пеленгом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через радиостан­цию, и ортодромическим направлением на самолет. Отсчитывает­ся от северного направления меридиана по ходу часовой стрелки от 0 до 360°. Пеленг самолета называется истинным, если от­ечет ведется от истинного меридиана, и магнитным, если от­счет ведется от магнитного меридиана (рис. 12.6).
Пеленги самолетов рассчитываются по формулам:
МПС = МПР ± 180°;       ИПС = ИК + КУР ± 180°;
МПС = МК + КУР ± 180°;   ИПС = МК + (± Дм) + КУР ± 180°;
МПС = КК + (±Δк) + КУР ± 180; 
МПС = КК + (±Δк) + (±Δм) + КУР± 180°; ИПС = ИПР ± 180°;      
ИПС = МПС + (±Δм).
При КУР=180° магнитный пеленг самолета МПС=МК. Указанные формулы для расчета ИПС используются в том случае, когда разность между долготой радиостанции и долготой самолета менее 2°. Если эта разность составляет 2° и более, то при расчете ИПС необходимо учитывать поправку на угол схож­дения меридианов.

Распечатать ..

 
Другие новости по теме:

  • Пеленг и курсовой угол ориентира
  • Курсы самолета
  • Поправка на угол схождения меридианов
  • Путевые углы и способы их определения
  • Списывание радиодевиации - Причины радиодевиации и ее характер


  • Rambler's Top100
    © 2009