www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование угломерных радиотехнических систем » Полет на радиостанцию
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Пенопласт в авиамоделиз­ме
В конструкции многих моделей, предлагаемых в этой книге, применяют пенопласт. Поэтому логичным будет пред­ложить некоторые практиче­ские советы по работе с ним. Пенопласт — вспененный полистирол нли полихлорви­нил, обладает низкой плот­ностью и большими возмож­ностями. Для изготовления авиамоделей применяют в ос­новном пенопласт марки ПС (полистирольный), ПХВ (по­лихлорвиниловый) и упаковоч­ ...

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» Использование РПСН-2 в режиме «Препятствие»
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, ко ...

» Контроль пути по дальности с помощью боковых радиостанций
Контроль пути по дальности заключается в определении прой­денного от КО или оставшегося до заданного пункта расстояния. С помощью боковых радиостанций эта задача решается следую­щими способами: 1)   пеленгованием   боковой радиостанции и прокладкой ИПС на карте; 2)   выходом на предвычисленный КУР или МПР; 3)   выходом на траверз боковой радиостанции.

» Использование НИ-50БМ при обходе гроз
При обходе гроз на маршруте полета НИ-50БМ может исполь­зоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).

» Ромбический коробчатый змей
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами. Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые т ...

» Сущность устранения (компенсации) полукруговой девиации
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и ука­затели: 1.  Щиток управления системой. 2.  Указатель угла сноса и путевой скорости. 3.  Задатчик угла карты, 4.  Счетчик координат. 5.  Переключатель «ДИСС—АНУ». 6.  Переключатель «Счетчик» («Вкл.—Выкл.»). 7.  Задатчик ветра.

» Особенности самолетовождения в условиях грозовой деятельности
Условия   самолетовождения    в   зоне  грозовой    деятельности. Грозы являются опасными явлениями погоды для авиации. Опас­ность полетов в условиях грозовой деятельности связана с силь­ной турбулентностью воздуха и возможностью попадания мол­нии в самолет, что может вызвать его повреждение, поражение экипажа и вывод из строя оборудования. Наиболее опасными являются фронтальные грозы, которые ох­ ...

» Предотвращение случаев попаданий самолетов в зоны с особым режимом полетов
Над территорией СССР установлены определенные режимы полетов, обеспечивающие безопасность полетов по трассам, в воздушных зонах крупных центров страны и в районах аэродро­мов, а также предотвращающие случаи нарушения экипажами самолетов государственной границы Союза ССР и позволяющие осуществлять контроль за полетами самолетов.

» Теория ротора
Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом пот ...

» Модель вертолета чешских авиамоделистов
Модель вертолета чешских авиамоделистов (рис. 53) на­поминает настоящий гели­коптер. Фюзеляж заодно с килем вырезают из пластины пено­пласта толщиной 5 мм и по периметру фигуры окантовы­вают липовыми рейками сече­нием 5X1 мм. В качестве силовой балки используют сос­новую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшип­ник винта, а с другого при­вязывают крючок из прово­ ...

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Особенности использования самолетной радиолокационной станции РПСН-3
Радиолокационная станция РПСН-3 выпускается в нескольких вариантах. Комплектность станции зависит от типа самолета. На самолете Ан-24 для работы с РПСН-3 установлены: пульт управ­ления, пульт контроля и один индикатор. Станция имеет семь режимов работы: «Снос», «Обзор», «Дальний обзор», «Горы — Грозы», «Изо—Эхо», «Самолеты» и «Маяк». Режим «Маяк» на всех вариантах станции не использует ...

» Определение места самолета
Место самолета определяется с целью полного контроля пути, определения навигационных элементов полета и восстановления потерянной ориентировки. В зависимости от условий полета и навигационной обстановки МС может быть определено: по одному радиопеленгатору; по двум радиопеленгаторам; по радиопеленгатору и радиостанции.

» Автожир представляет собой летательную машину тяжелее воздуха
Автожир представляет собой летательную машину тяжелее воздуха, С точки зрения конструкции автожир можно назвать самолетом с вращаю­щейся несущей поверхностью, так как последней является авторотирующий (свободно вращающийся) винт-ротор большого диаметра и малого геометриче­ского шага, расположенный над фюзеляжем так, что ось его нормальна (или близка к нормали) оси фюзеляжа. Авторотирует винт-ротор ...

» Вывод самолета в заданный район
Для вывода самолета в заданный район необходимо: 1.  Соединить прямой линией место самолета с пунктом, на ко­торый необходимо выйти. 2.  Измерить по карте ЗМПУ и расстояние до заданного пунк­та (рис. 19.7). 3.  Стрелки счетчика координат установить на нуль. 4.  На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5.  На задатчике ветра установить навигационное направление ветра и его скорост ...

» Способы измерения высоты полета
Основными способами измерения высоты полета являются ба­рометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно из­меняющегося с высотой. Барометрический высотомер представля­ет собой обыкновенный барометр, у которого вместо шкалы дав­лений поставлена шкала высот. Такой высотомер определяет вы­соту полета самолета к ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Определение навигационных элементов с помощью РСБН-2
РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж мо­жет определить ветер, по которому в случае необходимости выпол­няются расчеты для обеспечения самолетовождения за преде­лами рабочей области системы.

» Ручка управления с фик­сатором
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее ос­воить этот прием, применяют ручку управления, которая фиксируется на предплечье не­большим  хомутом   (рис.  67).

» Дальность полета
Цель дан­ной игры — достижение наи­большей дальности полета. Перед началом надо огово­рить, сколько раз каждый участник будет запускать свою модель, иными словами, сколь­ко будет зачетных полетов (обычно — три). А перед ни­ми надо дать возможность совершить один-два трениро­вочных (пристрелочных) за­пуска. Очередность выхода на старт обычно определяют же­ребьевкой.

» Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, ре ...
Навигационная система «Трасса» предназначена для непре­рывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямо­угольной системе координат (дальность и линейное боковое ук­лонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является изме­ритель путевой скорости и угла сноса, исп ...

» Способы определения путевой скорости в полете
Путевая скорость в полете может быть определена одним из следующих способов:1)   по  известному  ветру   (на НЛ-10М,  расчетчике,  ветрочете и в уме);2)   по  времени пролета известного   расстояния   (по отметкам места самолета);3) по времени пролета расстояния, определяемого с помощью самолетного  радиолокатора или радиотехнических систем;4)   по высоте полета и времени пробега визирной точкой и ...

» Выход на радиостанцию с нового заданного направления
Выход на радиостанцию аэродрома с нового заданного на­правления осуществляется только по указанию диспетчера в це­лях обеспечения безопасности полета. Выходить на новую ЛЗП приходится при заходе на посадку по кратчайшему расстоянию, на, маршруте и в учебных полетах. Применяются следующие способы выхода на новую ЛЗП: а)   с постоянным МК выхода; б)   с постоянным КУР выхода.

» Поправка на угол схождения меридианов
Как известно, на картах конической и поликонической проек­ций, применяемых для целей радиопеленгации, меридианы непа­раллельны между собой. Поправкой σ на схождение меридианов назы­вается угол, заключенный между северным направлением истин­ного меридиана радиостанции и северным направлением истинного меридиана самолета, перенесенного в точку радиостанции парал­лельно самому себе (рис. 12.7). ...

» Организация авиамодельного кружка
Кру­жок — одна из форм работы по техническому творчеству. Он объединяет школьников, интересующихся определенной областью техники. Цель заня­тий любого технического круж­ка — приобщение ребят к тру­ду, развитие их творческих способностей, формирование умений и навыков. Авиамодельный кружок объе­диняет ребят, увлеченных авиа­цией. Для многих из них авиамоделизм, это увлека­тельное и серь ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Полет на радиостанцию
Самолетовождение » Использование угломерных радиотехнических систем  |   Просмотров: 24336  
 
Полет на радиостанцию может быть выполнен пассивным или активным способом.
В свою очередь активный полет на радиостанцию может быть выполнен одним из следующих способов;
1)   с выходом на ЛЗП;
2)   с выходом в КПМ (ППМ);
3)   с любого направления подбором курса следования. Пеленги, определяемые при полете на  радиостанцию,  можно
использовать для контроля пути по направлению.
Контроль пути по направлению при полете на радиостанцию осуществляется сравнением МПР с ЗМПУ. В результате этого сравнения определяется дополнительная поправка (ДП). Если МПР=ЗМПУ, то самолет находится на ЛЗП, если МПР меньше ЗМПУ, то самолет находится правее ЛЗП, если больше, — левее ЛЗП (рис. 13.6).
Контроль пути по направлению при полете на радиостанцию
Рис.  13.6. Контроль пути по направлению при полете на радиостанцию
 
Магнитный пеленг радиостанции
МПР = МК + КУР.
В практике полетов МПР определяется с помощью указателя курсовых углов по упрощенной формуле:
МПР = МК ± α.
Знак плюс берется, если α = КУР; т. е. радиостанция справа впереди, а знак минус, — если α = КУР—360°, т. е. радиостанция слева впереди (рис. 13.7).
Полет на радиостанцию
Дополнительная поправка, боковое уклонение и фактический угол сноса определяются по формулам:
ДП = ЗМПУ — МПР;
БУ = Sост/ Sпр ·ДП;
УСф = (±УСр) + (±БУ)
или с помощью НЛ-10М (рис. 13.8).
Пример. ЗМПУ=40°; МКР = 35°; КУР=10°; Sпр = 70 km; Sост = 43 км. Оп­ределить МПР, ДП, БУ, УСф.
Решение:   1. Определяем МПР и ДП:
МПР = МК + КУР - 35° + 10° — 45°;
ДП = ЗМПУ — МПР - 40° — 45° = — 5°
2. Рассчитываем БУ, УСР и УСф:
БУ = Sост/ Sпр ·ДП = 43/70 · (—5°) = — 3°
УСр = ЗМПУ — МКр = 40е — 35° = + 5°;
УСф = (± УСР) + (± БУ) = (+ 5°) + (— 3°) = + 2°.
Полет на радиостанцию пассивным способом. Сущность пас­сивного способа полета на радиостанцию заключается в том, что стрелка указателя радиокомпаса удерживается на значении КУР=0° в течение всего полета до выхода на радиостанцию. В этом случае МК.—МПР.
При таком способе вождения продольная ось самолета посто­янно направлена на радиостанцию.
Порядок пассивного способа полета следующий:
1)   настроить радиокомпас на радиостанцию,  прослушать  по­зывные и убедиться в работе радиостанции и радиокомпаса;
2)   доворотом   самолета установить    стрелку    указателя    на КУР=0°;
3)   пилотировать  самолет  так,  чтобы  стрелка  указателя  бы­ла на КУР=0° (рис. 13.9).
При боковом ветре траектория полета искривляется, откло­няясь от первоначального направления на радиостанцию. Кри­вая, по которой движется самолет при боковом ветре, выдержи­вая КУР = 0°, называется радиодромией. Форма и длина радиодромии зависят от воздушной скорости самолета, скорости и угла ветра.
Чем больше скорость бокового ветра, тем больше удлинение пути и отклонение радиодромии от ортодромии.
Пассивный способ полета на радиостанцию имеет следующие недостатки:
а) при наличии бокового ветра самолет следует не по ЛЗП;
б) при сильном боковом ветре заметно удлиняется путь, увели­чиваются время полета и расход топлива;
в) в горной местности вследствие отклонения радиодромии от ЛЗП не обеспечивается безопасность полета;
г) при отказе радиокомпаса или выключении радиостанции экипаж оказывается в затруднительном положении, так как самолет не находится на ЛЗП и курс следования на радиостанцию не подобран.
В силу этих причин в полетах по воздушным трассам пассивный способ неприменим. Его целесообразно использовать для вывода самолета в район аэродрома с небольших расстояний (30—50 км).

Полет на радиостанцию


Активный полет на радиостанцию с выходом на ЛЗП. Данный способ применяется при значительном уклонении самолета от ЛЗП, а также в случаях, когда необходимо строго следовать по ЛЗП.
Активный полет на радиостанцию — это такой полет, при ко­тором стрелка указателя АРК удерживается на значении КУР = 360°+(±УС).
Продольная ось самолета при этом будет развернута на угол сноса по отношению к линии пути.
Данный способ является основным при выполнении полетов по воздушным трассам. Порядок его выполнения следующий:
1.  Пройти ИМП или ППМ с МКР или с МК = ЗМПУ.
2.  Через 5—15 мин полета отсчитать КУР, определить МПР, сравнить его с ЗМПУ и определить сторону уклонения самолета от ЛЗП и величину дополнительной поправки (рис. 13.10).
МПР = МК + КУР или МПР = МК ± α; ДП = ЗМПУ — МПР.
3.  По   пройденному   и   оставшемуся   расстояниям   определить боковое уклонение по формуле
БУ = Sост/ Sпр ·ДП
или с помощью НЛ-10М.
4.  Задаться углом выхода   (Увых берется в пределах 20—90°), рассчитать МКвых= ЗМПУ± Увых и вывести самолет на ЛЗП.
5.  Определить  момент  выхода  на  ЛЗП    по  КУРвых=:360°± Увых
6.  После   выхода на    ЛЗП    установить    самолет на МКсл = МКР — (±БУ) или МКсл = ЗМПУ—(±УСф), где УСф=(±УСР) + (±БУ).
7.  Дальнейший контроль   пути   по направлению осуществлять сравнением   определяемых    МПР   с   ЗМПУ  или по КУРсл = 360°+(±УСф).
Пример.  ЗМПУ=100°; МКР=98°; КУР=357°; tпр==10 мин, tocт = 20 мин:
Увых = 30°.
Полет на радиостанцию

Определить данные для выхода и следования по ЛЗП. Решение.  1.    Находим МПР и ДП:
МПР = МК ± α = 98° — 3° = 95°;
ДП = ЗМПУ —МПР = 100°— 95°= +5°.
2.  Определяем БУ и УСф:
БУ= tост/tпр·ДП = 20/10·5 = + 10°.
УСф = (± УСР) + (± БУ) = (+ 2°) + (+ 10°) = + 12°.
3.  Рассчитываем МКсл и КУРсл
МКсл = МКР — (± БУ) = 98°— (+ 10°) = 88°.
или
МКсл = ЗМПУ —   (± УСф) = 100° — ( +12°) =88°;
КУРсл = 360° + (± УСф) = 360° + (+ 12°) == 12°.

Активный полет на радиостанцию с выходом в КПМ (ППМ) применяется, когда уклонение самолета  от ЛЗП или оставшееся расстояние до КПМ (ППМ) малы.
Порядок выполнения полета следующий:
1.  Пройти ИПМ       (ППМ)  с МКР     или  МК=ЗМПУ     (рис. 13.11).
2.  Через 5—15 мин полета отсчитать КУР, определить МПР, сравнить его с ЗМПУ и определить сторону уклонения самолета от ЛЗП и величину дополнительной поправки:
МПР = МК + КУР или МПР = МК ± α;
ДП = ЗМПУ — МПР.
3. По пройденному и оставшемуся расстояниям или времени определить БУ и рассчитать ПК по формулам:
БУ = Sост/ Sпр ·ДП;
ПК = БУ + ДП
или с помощью НЛ-10М (рис. 13.12).
Полет на радиостанцию с выходом в КПМ
 
Рис. 13.11. Полет на радиостанцию с выходом в КПМ (ППМ)

Полет на радиостанцию с выходом в КПМ

4.  Определить курс следования в КПМ (ППМ)   и установить на него самолет:
МККПМ = МКр— (±ПК).
5.  Дальнейший контроль пути по  направлению осуществлять сравнением определяемых МПР с МПР, который получен в мо­мент определения БУ, или по КУРсл=360°+(±УСф).

Пример.   ЗМПУ=80°;   МКР = 70°;  КУР = 4°;   tпр = 15   мин;   t ост = 10    мин. Определить данные для полета в КПМ (ППМ). Решение. 1.   Находим МПР и ДП:
МПР = МК ± α = 70° + 4° - 74°;
ДП = ЗМПУ — МПР = 80° — 74° = + 6°.
2.Определяем БУ и ПК:
БУ= tост/tпр·ДП = 10/15·6 = + 4°;
ПК = БУ + ДП = 4° + 6° = + 10°.
3. Рассчитываем МК следования в КПМ, УСф и КУРсл
МККПМ= МКр — (± ПК) = 70° — (± 10°) = 60°;
УСф = (± УСР) + (± БУ) — (+ 10°) + (+ 4°) = + 14°;
КУРсл - 360° + (± УСф) = 360° Ч- (+ 14°) = 14».

Активный полет с любого направления
подбором курса следо­вания применяется при выходе на радиостанцию после обхода грозовой деятельности, при восстановлении потерянной ориенти­ровки, когда отсутствуют данные о ветре.
Порядок выполнения полета следующий:
1.  Настроить радиокомпас на радиостанцию, доворотом само­лета  установить  КУР = 0°, заметить   курс и   продолжать  полет с этим курсом.
2.  Через 3—5 мин полета отсчитать КУР и определить сторо­ну сноса. Если КУР увеличился, снос левый, если уменьшился, снос правый (рис. 13.13),
3. При изменении КУР бо­лее чем на 2° установить са­молет на КУР следования, предполагая, что УС = ±5°.
При правом сносе КУРсл = 5°, при левом сносе КУРсл =  355°.
4.  Заметить курс, продолжать полет с этим курсом и следить за изменением КУР.
5.  Если КУР снова увеличится  (уменьшится), то необходимо ввести вторую поправку ±8°, т. е. взять КУРсл = 360°+(±8°).
При необходимости вводится   третья   поправка,   равная ±10°, и берется КУРсл =360°+(±10°).
Если экипажу известно, что снос самолета большой, то вели­чина первой поправки на снос может равняться ±10°.
6.  Когда упреждение на снос велико (КУР увеличивается при правом сносе), то необходимо установить самолет на МК, рав­ный среднему значению последнего и предыдущего МК.
Курс считается подобранным, если КУР не изменяется.
 
 Активный полет с любого направления

Распечатать ..

 
Другие новости по теме:

  • Полет от радиостанции
  • Выход на радиостанцию с нового заданного направления
  • Полет на радиопеленгатор
  • Полет от наземного радиопеленгатора
  • Контроль и исправление пути при полете от радиолокатора и на радиолокатор


  • Rambler's Top100
    © 2009