www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Кордовые модели самолетов » Пилотажная модель «Акро­бат»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Определение навигационных элементов с помощью РСБН-2
РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж мо­жет определить ветер, по которому в случае необходимости выпол­няются расчеты для обеспечения самолетовождения за преде­лами рабочей области системы.

» Определение навигационных элементов на контрольном этапе
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно ...

» Использование курсовых приборов самолета Ан-24
Самолет Ан-24 оборудован гироскопическим индукционным ком­пасом ГИК-1 и гирополукомпасом ГПК-52, которые позволяют вы­полнять полет по заданному маршруту как по локсодромии, так и по ортодромии. При подготовке к полету штурман обязан решить, какой вид по­лета будет применяться, и в зависимости от этого подготовить и нанести на карту необходимые данные. Полеты по локсодромии рекомендуется осуществл ...

» Элементарные силы и элементарный крутящий момент лопасти
Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэродрома посадки
В тех случаях, когда полет выполняется с ортодромическим кур­сом на аэродром, где горизонтальная составляющая геомагнитно­го поля мала, необходимо до начала снижения с эшелона уста­новить на УШ курс полета самолета относительно магнитного ме­ридиана аэродрома посадки. Для этой цели в режиме «ГПК» уста­навливают УШ на отсчет:ОМКа = МКГ + (± Δм.м.с) + (λа—λм.с) sin φcp ...

» Точность посадки
Цель этих соревнований — посадить модель в заранее обозначенное место. На расстоянии 5—6 м от стартовой линии размечают «аэродром». Это может быть круг диаметром около 1 м или лист газеты. Каждый участник после тренировочных запусков совершает зачетный полет Если после первого тура у нескольких участников модели приземлились точно на «аэродром», для определения победителя линию старта ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Использование КС-6 в полете
Курсовая система позволяет выполнять полеты с локсодроми­ческими и ортодромическими путевыми углами. Полеты по локсо­дромии рекомендуются в умеренном и тропическом поясах при ус­ловии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен ...

» Расчет времени и места встречи самолета с темнотой или рассветом и определение продолжительности ноч ...
Когда полет начался днем, а заканчивается ночью или наоборот, необходимо знать, в какое время произойдет встреча самолета с темнотой или рассветом и какова продолжительность ночного по­лета. Время и место встречи самолета с темнотой или рассветом мож­но рассчитать с помощью НЛ-10М или по графику. Рассмотрим порядок такого расчета с помощью НЛ-10М.

» Курсы самолета девиация магнитных компасов
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно пр ...

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Уравнение нулевого крутящего момента
Средний крутящий момент ротора равен:  

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Азимутальные проекции
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проек ...

» Модель вертолета чешских авиамоделистов
Модель вертолета чешских авиамоделистов (рис. 53) на­поминает настоящий гели­коптер. Фюзеляж заодно с килем вырезают из пластины пено­пласта толщиной 5 мм и по периметру фигуры окантовы­вают липовыми рейками сече­нием 5X1 мм. В качестве силовой балки используют сос­новую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшип­ник винта, а с другого при­вязывают крючок из прово­ ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости
Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструмен­тальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на из­менение плотности воздуха.

» Состав оборудования системы «Трасса» и принцип работы навигационного вычислителя
В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1.  Доплеровский   измеритель  путевой   скорости   и   угла сноса (ДИСС). 2.  Автоматическое  навигационное  устройство   (АНУ);   его на­зывают также навигационным вычислителем. 3.  Датчик курса. 4.  Датчик воздушной скорости. 5.  Задатчик угла карты. 6.  Указатель угла сноса и путевой скорости. 7. ...

» Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратн ...
Такая операция осуществляется по формулам: V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6. Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2. Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индек ...

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Способы определения путевой скорости в полете
Путевая скорость в полете может быть определена одним из следующих способов:1)   по  известному  ветру   (на НЛ-10М,  расчетчике,  ветрочете и в уме);2)   по  времени пролета известного   расстояния   (по отметкам места самолета);3) по времени пролета расстояния, определяемого с помощью самолетного  радиолокатора или радиотехнических систем;4)   по высоте полета и времени пробега визирной точкой и ...

» Особенности самолетовождения на малых высотах
Условия самолетовождения на малых высотах. Полетами на малых высотах называются полеты, выполняемые на высотах до 600 м над рельефом местности. Такие полеты могут быть пред­намеренными (при выполнении различных видов работ авиацией специального применения), учебными (согласно программам лет­ной подготовки) и вынужденными (по различным причинам).

» Сущность кодовых выражений ЩГЕ и ЩТФ
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

» Деление данного числа на тригонометрические функции углов
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов. Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение задан­ного угла α шкалы 3 (при делении числа на синус угла) или угл ...

» Коробчатый воздушный змей
Коробчатый змей (рис. 4). Для его изготовления необхо­димы три основные рейки диа­метром 4,5 мм и длиной 690 мм и 12 коротких реек сечением 3X3 мм и длиной 230 мм. Ко­роткие рейки заостряют и встав­ляют на клею в основные под углом 60°. Оклеивают змей папиросной бумагой. Масса его 55—60 г.

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Разграфка и номенклатура (обозначение) карт
Каждая карта издается на отдельных листах, имеющих опреде­ленные размеры по долготе и широте и представляющих части об­щей карты целого государства, материка, всего мира. Система деления общей карты на отдельные листы называется ее разграфкой, а система обозначения листов — номенкла­турой. Каждому листу карты в зависимости от масштаба по оп­ределенному правилу присваивается свое буквенное и ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Пилотажная модель «Акро­бат»
Строим сами летающие модели » Кордовые модели самолетов  |   Просмотров: 13795  
 
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа.
Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно короткой носовой частью. Его основой  служат  две  плоские липовые боковины,  пристыко­вываемые при сборке к смон­тированным на крыле брускам моторамы. Носовую часть фю­зеляжа дооформляют верхней и нижней половинами «капо­та», выдолбленными из липы и приклеенными к мотораме, боковинам и шпангоутам. За­тем устанавливают рейки хво­стовой балки, брусок крепле­ния   шасси,   хвостовые   рееч­ные   шпангоуты   и   зашивку под   стабилизатор.   Вклеивать «полик» кабины удобнее после отладки  системы  управления. Установка же нижней обшив­ки  фюзеляжа   не   влияет  на очередность операций.
 
Пилотажная модель «Акробат»
Пилотажная модель «Акробат»
 
Рис. 35. Пилотажная модель «Акробат»:
а — чертеж; б — элементы конструкции; 1 —кок винта; 2—моторама; 3— капот; 4—передний шпан­гоут; 5—шпангоуты; 6—фонарь; 7—верхний стрингер; 8—фальшкиль; 9— хвостовая бобышка; 10— обшивка хвостовой балки; 11 — нижний стрингер; 12— бобышка крепления стойки; 13 — обте­катель; 14— стойка шасси; 15—колесо; 16—обтекатель шасси; 17 — законцовка; 18 — направляющая троса управления; 19 — передняя кромка; 20— трос управления; 21 — нервюра; 22 — отверстие для стойки шасси; 23 — качалка управления; 24 — центральная нервюра; 25 — топливный бак; 26 — кронштейн качалки; 27 ~ кронштейн привода закрылков; 28 — закрылок; 29 — стабилизатор; 30 — руль высоты; 31—обшивка центроплана; 32 — тяга привода закрылков; 33 — кабанчик закрылков; 34 — тяга руля высоты; 35 — кронштейн руля высоты
 
Крыло по конструктивной схеме напоминает плоскости моделей воздушного боя. Переднюю     кромку-лонжерон
вырезают из сосны. В корне сечение заготовки составляет 18X25 мм, к концу консоли ее уменьшают соответственно хорде в два раза. Масса такой кромки после доводки профиля довольно значитель­на— около 150 г. Однако если учесть, что фюзеляж очень .легок, а хвостовое опе­рение «легче пуха», то почему бы не вложить излишки массы в технологичную, прочную, рас­положенную близко от цент­ра тяжести кромку-лонжерон. Такой элемент даже поле­зен — он способствует увели­чению момента инерции по крену.
Необычный, слишком тон­кий профиль на первый взгляд вызывает определенные сом­нения. Однако, как показали первые же испытания, переход на упрощенную профилировку не дает каких-либо заметных ухудшений летных свойств, а тонкий" профиль обеспечил воз­можность создания гибкого крыла, дополнительно улуч­шающего характеристики мо­дели при резких эволюциях. Впрочем, гибким крыло явля­ется .только в верхнем и ниж­нем направлениях, так как на крутку консоли оказались на удивление жесткими.
Задняя кромка сделана об­легченной, в виде буквы Т. Это позволяет без прогибов выдержать натяжение обшив­ки между редко поставленны­ми нервюрами. Каркас крыла замыкают прочными сосновы­ми законцовками, связанными с передней кромкой фанер­ными врезными косынками, с задней — кромкой, подкреп­ленной    легкими    косынками.
Небольшой изгиб кромки лон­жерона образован при сбор­ке за счет стягивания хво­стовиков законцовок задней кромкой. Такой прием обес­печивает компенсацию незна­чительных неточностей уста­новки деталей по углу атаки. Нервюры, вырезанные с мини­мальными припусками, вклеи­вают в собранный силовой контур после отверждения сое­диняющего его клея. Стыки деталей усилены треугольны­ми рейками.
Сборку центроплана крыла ведут в следующем порядке: усиление задней кромки, топ­ливный бак с узлом качалки управления и тягой закрыл­ков, центральная нервюра из двух половин (верхней и ниж­ней) и полунервюра, обшивка центроплана. После оконча­ния сборки каркаса вклеивают узлы вывода тросов управ­ления. В правой консоли заде­лывается груз массой 15 г, после чего особенно тщатель­но устанавливают бруски мо­торамы и в них заклеивают винты МЗ для крепления дви­гателя.
Закрылки имеют предель­но облегченную конструкцию. Благодаря значительному су­жению и соответственно боль­шой ширине и толщине в кор­не они получаются достаточно жесткими на кручение. Для окантовки закрылков приме­няют тонкие липовые рейки. Задача окантовки — предохра­нить пенопласт от воздействия температуры при обтяжке лав­сановой пленкой и как бы раздвинуть по передней кром­ке 'закрылка обшивку. От за­вала   на   сторону   последнюю предохраняют легкие полунер­вюры, не касающиеся об­шивки.
Горизонтальное оперение по конструкции полностью по­вторяет закрылки. Обшивку центральной части стабили­затора приклеивают на полу­нервюры, концы стабилизато­ра несут небольшие килевые шайбы. Заметим, что основ­ная их функция — не улучше­ние внешнего вида пилотажной, а повышение эффектив­ности оперения, так как устра­няются концевые перетекания при значительных углах откло­нения руля.
Шасси изготовляют по ве­лосипедной схеме. Конструк­ция стойки ясна из рисунка, перо вилки несет небольшое колесо. Хвостовая часть об­текателя с «пяткой» надежно удерживает хвост модели от опускания на взлете и посаДке, а крен предотвращают лег­кие костыли на концах кон­солей.
Система управления — обычного типа. Надо упомя­нуть лишь разные длины по­водков при нейтральном поло­жении рулей. Эта разница равна 100 мм и служит для предохранения карабинов корд от сцепливания.
Обшивка всей модели — из металлизированной лавсано­вой пленки на клее БФ-2. Исключение составляет толь­ко фюзеляж. Для повышения жест-кости на кручение его обшивают кабельной бумагой средней толщины. Фальшкиль монтируют после пробных за­пусков; он служит своеобраз­ным грузом, позволяющим точно подобрать положение Центра тяжести.
Центр тяжести указан на чертеже. Возможно, потребу­ется несколько изменить его Положение, чтобы добиться Максимальной устойчивости и Управляемости. Однако надо отметить,   что  и  приведенное значение обеспечивает отлич­ное сочетание этих характери­стик при довольно переднем значении центра тяжести — около 24 % по САХ (крити­ческая центровка подобной по-лупланерной схемы соответ­ствует примерно 35 %).
Мотоустановка — серийный микродвигатель КМД-2,5 с деревянным воздушным вин­том 230Х130 мм и с баком объемом около 80—100 см3, работающим под давлением. Эта система питания надеж­на, тем более что добиться от «дизеля» хотя бы мало-мальски удовлетворительной перегазовки на фигурах не­возможно. Зато режим на всех фигурах при подаче топ­лива из бака под давле­нием надежнее, он не меня­ется по мере выработки топ­лива, да и на четких углах при выполнении фигур сни­жение оборотов не так заметно.
Основные данные «Акроба­та» таковы: размах 1500 мм, площадь крыла 28 дм2, пло­щадь стабилизатора 5 дм2, полетная масса 720 г.

Распечатать ..

 
Другие новости по теме:

  • Модель воздушного боя «Юниор»
  • Кордовая модель воздушного боя А. Сырятова
  • Кордовая учебно-тренировочная модель самолета
  • Модель конструкции авиа­моделистов из г. Барановичи
  • Кордовая модель самолета «Универсал»


  • Rambler's Top100
    © 2009