www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Модели планеров » Модель планера А-1 «Пионер»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Вывод самолета в заданный район
Для вывода самолета в заданный район необходимо: 1.  Соединить прямой линией место самолета с пунктом, на ко­торый необходимо выйти. 2.  Измерить по карте ЗМПУ и расстояние до заданного пунк­та (рис. 19.7). 3.  Стрелки счетчика координат установить на нуль. 4.  На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5.  На задатчике ветра установить навигационное направление ветра и его скорост ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Определение магнитного пеленга ориентира с помощью девиационного пеленгатора
Для определения МПО необходимо: 1)  установить треногу в центре площадки, где будет списывать­ся девиация; 2)   закрепить пеленгатор на треноге и установить его в горизон­тальное положение по уровню; 3)   отстопорить лимб и магнитную стрелку; 4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб; 5)   разворачивая визирную рамку и наблюдая ...

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Методы использования НИ-50БМ в полете
Навигационный индикатор может быть использован в полете следующими методами: 1.  Методом контроля пройденного расстояния. 2.  Методом  контроля   оставшегося расстояния   (методом   при­хода стрелок к нулю). 3.  Методом условных координат.

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Навигационное использование системы «Трасса»
Система «Трасса» может быть использована в следующих ре­жимах: «ДИСС», «Память» и автономный режим работы нави­гационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а)   Перед   вылетом:  1.  Установить  на  щитке управления левый  переключатель в положение  «Выключено», а  правый  — в положение «Суша»  (при полете над водной пове ...

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Формулы полных сил ротора
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.

» Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратн ...
Такая операция осуществляется по формулам: V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6. Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2. Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индек ...

» Способы измерения высоты полета
Основными способами измерения высоты полета являются ба­рометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно из­меняющегося с высотой. Барометрический высотомер представля­ет собой обыкновенный барометр, у которого вместо шкалы дав­лений поставлена шкала высот. Такой высотомер определяет вы­соту полета самолета к ...

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Определение путевой скорости самолета
При полете самолета от радиолокатора и на радиолокатор пу­тевая скорость определяется в следующем порядке: 1.  Запросить у диспетчера место самолета и заметить время. 2.  Через 7—10 мин полета снова запросить место самолета и заметить время. 3.  Определить пройденный самолетом путь как разность между полученными дальностями:   Sпр =Д2—Д1 или Sпр=Д1—Д2 4.  По пройденному расстояни ...

» Пользование указателями радиокомпаса
Указатель пилота предназначен только для отсчета КУР по шкале против стрелки указателя. Шкала оцифрована через 30°, цена одного деления раина 5°. Указатель штурмана предназначен для отсчета КУР и пелен­гов радиостанции и самолета. Для отсчета КУР необходимо: 1)   ручкой с надписью КУРС подвести нуль шкалы против не­подвижного треугольного индекса; 2)  отсчитать значение КУР по шкале   против остро ...

» Единицы измерения расстояний
В самолетовождении основными единицами измерения расстоя­ний являются километр и метр. В некоторых случаях в качестве единицы измерения расстояния применяется морская миля (ММ). В США и Англии для измерения расстояний, кроме морской мили, применяется английская статутная миля (AM) и фут. Морская ми­ля представляет собой длину дуги меридиана в 1'.

» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Полет на радиопеленгатор
При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашиваются в телефонном режиме обратные пеленги (ОП) словами: «Дайте обратный пеленг».При использовании KB радиопеленгаторов для контроля пути по направлению запрашиваются пеленги в телеграфном режиме кодовым выражением ЩДМ, которое означает: «Сообщите магнит­ный курс, с которым я должен направиться к вам при отсутст­вии в ...

» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету
Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным до­кументом, в котором отражаются применяемые способы самолето­вождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...

» Конические проекции
Конические проекции получаются в результате переноса поверх­ности Земли на боковую поверхность конуса, касательного к одной из параллелей или секущего земной шар по двум заданным па­раллелям. Затем конус разрезается по образующей и разворачи­вается на плоскость. Конические проекции в зависимости от распо­ложения оси конуса относительно оси вращения Земли могут быть нормальные, поперечные и косые. ...

» Навигационные задачи на маневрирование - Определение времени последнего срока вылета
Дневные срочные вылеты с аэродромов, не оборудованных для ночных полетов, разрешается начинать за 30 мин до восхода Солн­ца и заканчивать полет за 30 мин до наступления темноты в рав­нинной и холмистой местности и не позднее захода Солнца в гор­ной местности. В районах севернее широты 60° полеты разрешается заканчивать за 30 мин до наступления темноты.

» Определение и устранение девиации гироиндукционного компаса ГИК-1
При устранении девиации гироиндукционного компаса ГИК-1 необходимо: 1. Установить регулировочные винты коррекционного механизма в их среднее положение. При выпуске компаса с завода регулировочные винты лекаль­ного устройства устанавливаются в среднее положение, при кото­ром коррекционный механизм обеспечивает устранение остаточной девиации в пределах ±6°. В процессе предыдущего устранения девиации ...

» Элементарные силы и элементарный крутящий момент лопасти
Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.

» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем
Радиотехнические средства среди других средств самолетово­ждения занимают одно из важнейших мест и находят самое ши­рокое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самоле­товождение. Радиотехнические средства самолетовождения по месту рас­положения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: при­в ...

» Модель планера А-1 «Пионер»
Модель планера А-1 «Пио­нер» (рис. 26). Данный планер относится к категории спортив­ных моделей и существенно отличается от описанных ранее. С ним можно выступать на соревнованиях почти всех ран­гов и выполнять нормативы для присвоения спортивных разрядов. Разумеется, изготов­ление такой модели под силу лишь авиамоделистам, имею­щим опыт конструирования и определенные навыки в ра­боте. Для построй ...

» Определение места самолета
Место самолета при помощи наземного радиолокатора опреде­ляется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1)   запросить у диспетчера место самолета; 2)   получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3)   отложить  на  карте от  радиолокатора  полученный   азимут и дальность на линии азимута.

» Предотвращение случаев попаданий самолетов в зоны с особым режимом полетов
Над территорией СССР установлены определенные режимы полетов, обеспечивающие безопасность полетов по трассам, в воздушных зонах крупных центров страны и в районах аэродро­мов, а также предотвращающие случаи нарушения экипажами самолетов государственной границы Союза ССР и позволяющие осуществлять контроль за полетами самолетов.

» Безопасная высота полета и ее расчет
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от ...

» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и ука­затели: 1.  Щиток управления системой. 2.  Указатель угла сноса и путевой скорости. 3.  Задатчик угла карты, 4.  Счетчик координат. 5.  Переключатель «ДИСС—АНУ». 6.  Переключатель «Счетчик» («Вкл.—Выкл.»). 7.  Задатчик ветра.

» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Метательный планер «Старт»
Метательный планер «Старт» (рис. 22)  представляет собой дальнейшее   развитие   преды­дущих моделей. У него плав­ные очертания концевых час­тей   у   крыла,   стабилизатора и Киля. Основной материал — пенопласт ПС-4-40 и клей ПВА. Основа   фюзеляжа  —   две сосновые или липовые  рейки длиной   450   мм   и   сечением 6x2 мм. Между ними вклеи­вают пластину с наибольшим сечением 10X6 мм ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Модель планера А-1 «Пионер»
Строим сами летающие модели » Модели планеров  |   Просмотров: 19093  
 
Модель планера А-1 «Пио­нер» (рис. 26). Данный планер относится к категории спортив­ных моделей и существенно отличается от описанных ранее. С ним можно выступать на соревнованиях почти всех ран­гов и выполнять нормативы для присвоения спортивных разрядов. Разумеется, изготов­ление такой модели под силу лишь авиамоделистам, имею­щим опыт конструирования и определенные навыки в ра­боте. Для постройки планера А-1 применяется дефицитная древесина — бальза. Но это не должно отпугивать желающих ее сделать. Бальзу можно заменить липой, ольхой или кедром, для нервюр приме­нить шпон толщиной 0,4— 0,6 мм, уменьшить сечение кромок. Для некоторых эле­ментов использовать пено­пласт.
Прежде чем приступить к изготовлению модели, нужно выполнить ее рабочий чер­теж и подготовить шаблон профилей крыла и стабили­затора.
 
Модель планера А-1 «Пионер»
 
Рис. 26. Модель планера А-1 «Пионер»
 
Носовую часть фюзеляжа из­готовляют из липовой пластины толщиной 10 мм. Вырезают по контуру, делают внутри отверстия и приклеивают к пластине две липовые рейки сечением 10X2 мм. С вклеенными че­тырьмя распорками они образу­ют хвостовую балку. На свобод­ном ее конце закрепляют сосно­вый брусок, в который на эпо­ксидной смоле вставляют крю­чок из проволоки ОВС диамет­ром 1 мм. Площадку для креп­ления стабилизатора делают из липы толщиной 3 мм. В каче­стве упора на ней используют липовую рейку сечением 4Х Х4 мм. Крючок для буксиров­ки модели из проволоки ОВС диаметром 2 мм вклеивают в носовую часть фюзеляжа на расстоянии 206 мм от переднего края. Боковые стороны фюзе­ляжа оклеивают фанерой тол­щиной 1 мм в носовой части и бальзовым шпоном — в хво­стовой.
Штыри для стыковки поло­вин крыла изготовляют из стальной проволоки ОВС: пе­редний — диаметром 2,6 мм, задний — диаметром 2 мм. Их подвергают закалке,  а затем
туго вставляют в гнезда носо­вой части фюзеляжа.
Киль, материалом для кото­рого служит бальзовая пласти­на толщиной 2,5 мм, врезан в фюзеляж. Руль поворота на петлях из лески навешен к задней кромке киля.
Собранный фюзеляж обра­батывают наждачной бумагой и оклеивают длинноволокни­стой бумагой, после чего по­крывают четыре раза эмалитом. Масса фюзеляжа — 151 г.
Крыло — наборное, из двух половин, каждая из которых включает 16 основных нервюр (из бальзы) и четыре силовых (из фанеры толщиной 1 мм). Порядок изготовления нервюр таков: вырезают из фанеры 10 заготовок для нервюр, слегка склеивают их и тщательно обрабатывают в тисках напиль­ником, который держат парал­лельно верхней плоскости тис­ков, иначе можно исказить профиль нервюр. После это­го сверлят в них два отверстия под штыри.
Затем берут две нервюры, обрисовывают их по конту­ру чернилами, Приклеивают к бальзовому бруску размером 120X20X80 мм  и обрабатыва­ют его ножом. Кривизну профиля и правильность обработки контролируют линейкой, делают вырезы для лонжеронов и пе­редней-кромки. Полученную за­готовку разрезают вдоль на нервюры толщиной 1,6—2 мм по линейке острозаточенным скальпелем. Дальнейшую до­водку нервюр до толщины 1,5 мм делают наждачной бума­гой, наклеенной на брусок. В заключение нервюры проэма-личивают.
Для лонжеронов крыла ис­пользуют сосновые рейки сече­нием 4X2 мм для перед­ней кромки — ре йку из липы се­чением 4X3 мм. 3аднюю кром­ку .выстругивают из бальзы се­чением 15X3 мм, вырезы для нервюр делают скальпелем на глубину 4 мм. Используя чер­теж, размечают карандашом места на лонжеронах и перед­ней кромке, где будут крепиться нервюры.
Устанавливаю нервюры на лонжеронах, прикрепляют пе­реднюю и заднюю кромки, места соединений промазыва­ют клеем. Законцовку делают из бальзы. Заднюю кромку крыла, пока еще прямоуголь­ную, состругивают рубанком и обрабатываю наждачной бумагой, чтобы она имела треугольное сечение и явля­лась продолжением профиля нервюры. Лобовую часть кры­ла на ширину 10 мм заши­вают бальзовым I шпоном тол­щиной 2 мм. Корневую часть обеих половин (в месте силовых нервюр) усиливают баль­зовым шпоном.
Каждую из половин крыла собирают отдельно. Надо быть внимательным и не сделать их на одну сторону. В месте, где должен быть угол поперечного V, крыло разрезают и при помо­щи уголков из 3-миллиметровой фанеры склеивают. Места сое­динений кромок усиливают уголками целлулоида, угловую нервюру вырезают из липы. Собранное крыло тщательно зачищают наждачной бумагой, наклеенной на деревянный брусок.
Конструкция стабилизатора аналогична конструкции крыла. Нервюры (длина 18 мм) выре­заны из бальзового шпона тол­щиной 1 мм. Передняя и задняя кромки — бальзовые, их сече­ние соответственно 8X6 и 10Х Х2,5 мм. Лонжероны выстру­ганы из липовых реек сечением 2,5Х 1,5 мм, законцовки — из бальзы. Крючки из проволоки ОВС диаметром 1 мм привя­зывают нитками с клеем к цен­тральной липовой нервюре, среднюю часть усиливают баль­зовым шпоном.
Стыки нервюр с кромками и лонжеронами промазывают клеем, кладут на ровную по­верхность и сверху помещают груз: стабилизатор получится ровным, без перекосов. После сборки неровности горизонталь­ного оперения зачищают наж­дачной бумагой.
Обычно модель начинают об­тягивать с фюзеляжа. Фюзеляж данной модели можно не обтя­гивать бумагой, а покрыть нитрокраской или бесцветным лаком (эмалитом). Крыло и стабилизатор оклеивают длин-
новолокнистой бумагой, пред­варительно окрашенной ани­линовым красителем и разгла­женной. Полосы бумаги долж­ны быть на 30—40 мм шире оклеиваемой поверхности. Пе­ред обтяжкой каркас прома­зывают жидким эмалитом.
Начинают оклеивать крыло снизу. Накладывают полосу бумаги и промазывают жидким клеем по нервюрам, лонжеро­нам и кромкам. Особенно тща­тельно надо обтягивать при сильно вогнутом профиле. Не­обходимо приглаживать бумагу по нервюрам, добиваясь ее при­клеивания. Обтянутое крыло слегка прошкуривают по кром­кам и покрывают двумя слоями эмалита. Просохшую обтяжку зачищают мелкой наждачной бумагой и дважды покрывают жидким эмалитом. Готовое кры­ло устанавливают в стапель на 5—7 дней.
Аналогично обтягивают ста­билизатор, но покрывают его тремя слоями жидкого нитро­лака.
Масса крыла данной модели 58 г, а стабилизатора 12 г. По­летная масса модели состав­ляет 221 г.
Готовую модель собирают, то есть устанавливают крыло при помощи штырей на фюзеля­же, стабилизатор привязывают резиновой нитью к площадке на хвостовой балке фюзеляжа. Собранную модель центруют. Для этого в камеру носовой части фюзеляжа загружают дробь или мелко нарезанные кусочки свинца. Центр тя­жести этой модели должен находиться на расстоянии 38— 40 мм от задней кромки крыла.
Первые регулировочные по­леты следует проводить в без­ветренную погоду. Перед за­пуском тщательно проверяют, нет ли перекосов крыла и хвостового оперения.
Регулируют модель путем подбора угла установки стаби­лизатора. Берут модель за фюзеляж под крылом и энер­гичным, но не резким толчком пускают. Она должна проле­теть по прямой 20—25 м. Если модель поворачивает вправо или влево, отклоняют руль поворота киля). При кабрирова­нии модели немного опускают заднюю кромку стабилизатора, подрезая хвостовую стойку фю­зеляжа. В случае резкого сни­жения модели поднимают зад­нюю кромку стабилизатора, помещая под нее тонкие про­кладки из плотной бумаги. Не рекомендуется. регулировать модель изменением центра тя­жести.
Отрегулировав модель на планирование с рук, присту­пают к запускам на леере (ры­боловная леска диаметром 0,5—0,6 мм). Длина леера по условиям соревнований не дол­жна превышать 50 м. Замеря­емый леер предварительно рас­тягивают с силой 20 Н. Один его конец привязывают к проволоч­ному кольцу, надеваемому на буксировочный крючок моде­ли, другой крепят на катушке. Для первых запусков жела­тельно размотать леер на 10— 12 м. После Нескольких поле­тов на коротком леере модель запускают на длинном леере, внимательно наблюдая за взле­том. При недостаточном угле поперечного V или чрезмерной эффективности   киля   модель,
находясь на леере, меняет на­правление полета — рыскает. Такой взлет опасен и не да­ет возможности запустить мо­дель на всю длину леера. До­биться хорошего взлета можно, увеличив угол поперечного V крыла или уменьшив площадь киля (последнее лучше).
Характерные недостатки по­лета после отделения леера — волнообразное движение, или спиральная неустой­чивость. Причина такого по­лета, а иногда и преждевремен­ного срыва с леера, заключа­ется чаще всего в том, что бук­сировочный крючок располо­жен слишком близко к центру тяжести модели. Этот недоста­ток устраняют, перенося крю­чок вперед.
Иногда после отделения ле­ера модель входит в вираж и не выходит из него до посадки. Попытки устранять вираж из­менением углов атаки крыла или стабилизатора приводят к появлению такого же виража, но противоположного направ­ления. В большинстве случа­ев подобные виражи проис­ходят с увеличенной скоростью снижения. Наиболее яркое про­явление этих признаков со­провождается заметным уве­личением скорости, уменьше­нием радиуса виража, бы­строй потерей высоты и опусканием носовой части модели во время виража. Это сви­детельствует о спиральной не­устойчивости. Чтобы решить, каким образом улучшить ус­тойчивость, необходимо попы­таться разобраться в проис-ходивших во время полета яв­лениях, пользуясь сведениями из аэродинамики. В большин-
стве случаев спиральную не­устойчивость можно устранить следующими способами:
увеличением боковой пло­щади носовой части фюзеля­жа — установкой гребня;
уменьшением площади киля;
увеличением угла попереч­ного V крыла модели;
перемещением центра тяжес-тн назад, что требует затем но­вой регулировки модели на пла­нирование.
К нежелательным явлениям, выявляющимся при запусках модели, относится чрезмерная путевая устойчивость. Ее признак — прямолинейный ус­тойчивый полет даже с неболь­шим боковым ветром. Сделать модель менее устойчивой мож­но, уменьшив угол крыла или увеличив площадь вертикально­го оперения, а также перемес­тив центр тяжести вперед, уве­личивая груз в носовой части фюзеляжа.

Распечатать ..

 
Другие новости по теме:

  • Модель планера «Малыш»
  • Резиномоторная модель са­молета класса В-1
  • Кордовая учебно-тренировочная модель самолета
  • Метательный планер «Старт»
  • Модель воздушного боя


  • Rambler's Top100
    © 2009