Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_260.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337
Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338
Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339
Вертолет (геликоптер) » Летательные аппараты - Авиационный моделизм и самолетовождение
» Особенности использования самолетной радиолокационной станции РПСН-3 Радиолокационная станция РПСН-3 выпускается в нескольких вариантах. Комплектность станции зависит от типа самолета. На самолете Ан-24 для работы с РПСН-3 установлены: пульт управления, пульт контроля и один индикатор. Станция имеет семь режимов работы: «Снос», «Обзор», «Дальний обзор», «Горы — Грозы», «Изо—Эхо», «Самолеты» и «Маяк». Режим «Маяк» на всех вариантах станции не использует ...
» Определение места самолета штилевой прокладкой пути При ведении визуальной ориентировки необходимо знать район предполагаемого местонахождения самолета, чтобы определить, какой участок карты сличить с местностью. Район предполагаемого местонахождения самолета может быть определен штилевой прокладкой пути, которая выполняется по записанным в бортовом журнале курсам, воздушной скорости и времени полета.
» Классификация ориентиров и их главные отличительные признаки Визуальная ориентировка ведется по земным ориентирам. Ориентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем ландшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и точечные.
» Предполетная проверка НИ-50БМ Для проверки НИ-50БМ перед полетом необходимо: 1. Включить электропитание прибора по переменному и постоянному току. 2. Включить и подготовить к работе ГИК. Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3. Установить на автомате курса и задатчике ветра МУК=МК самолета. 4. Ввести в задатчик ветра направлен ...
» Простейший вертолет — «муха» В практике авиамоделизма наибольшее распространение получили вертолеты одновинтовой схемы. Простейшая модель вертолетов лишь по принципу полета напоминает прототип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким винтом укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.
» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...
» Уравнение махового движения лопасти Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)
» Ручка управления с фиксатором Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее освоить этот прием, применяют ручку управления, которая фиксируется на предплечье небольшим хомутом (рис. 67).
» Поликонические проекции По принципу построения поликонические проекции незначительно отличаются от конических. Они являются дальнейшим усовершенствованием конических проекций. В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к параллелям или секущих земной шар по заданным параллелям. На поверхность каждого конуса переносится небольшой шаровой пояс земной ...
» Игры и соревнования с моделями планеров Соревнования — это итог работы каждого авиамоделиста. В них проверяется не только качество моделей, но и умение их конструкторов использовать полученные знания. В практике авиационного моделизма широко известны не только соревнования, но и игры, особенно с бумажными моделями. Перед началом стартов все участвующие в них планеры необходимо надписать — сделать опознавательные знаки. ...
» Умножение данного числа на тригонометрические функции углов Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчитать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...
» Особенности самолетовождения при полетах в особых условиях - Особенности самолетовождения над горн ... К полетам в особых условиях относятся полеты над горной местностью, в зоне грозовой деятельности, над полярными районами Северного и Южного полушарий, пустынной и малоориентирной местностями, большими водными пространствами, на малых высотах и ночью. Самолетовождение в особых условиях навигационной обстановки выполняется по общим правилам с учетом некоторых особенностей, знание которых являетс ...
» Полет от радиостанции Полет от радиостанции в заданном направлении может быть выполнен в том случае, если она расположена на ЛЗП в ИПМ, ППМ или контрольном ориентире. В этом случае полет осуществляется одним из следующих способов: с выходом на ЛЗП; с выходом в КПМ (ППМ). Пеленги, определяемые при полете от радиостанции, можно использовать для контроля пути по направлению.
» Змей-дельтаплан Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно состоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают пополам и закрепляют булавками. Выше диагонали на 40 мм (припуск на швы) проводят параллельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...
» Кордовая модель самолета «Универсал» Универсальную кордовую модель самолета (рис. 42) разработали юные техники Тимирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневренность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пилотажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изго ...
» Выход на радиостанцию с нового заданного направления Выход на радиостанцию аэродрома с нового заданного направления осуществляется только по указанию диспетчера в целях обеспечения безопасности полета. Выходить на новую ЛЗП приходится при заходе на посадку по кратчайшему расстоянию, на, маршруте и в учебных полетах. Применяются следующие способы выхода на новую ЛЗП: а) с постоянным МК выхода; б) с постоянным КУР выхода.
» Основные точки, линии и круги на земном шаре Земля непрерывно вращается с запада на восток. Диаметр, вокруг которого происходит это вращение, называется осью вращения Земли (рис. 1.2). Эта ось пересекается с поверхностью Земли в двух точках, которые называются географическими полюсами: один Северным (С), а другой Южным» (Ю). Северным называется тот полюс, в котором, если смотреть на него сверху, вращение Земли направлено против хода ча ...
» Вывод самолета в заданный район Для вывода самолета в заданный район необходимо: 1. Соединить прямой линией место самолета с пунктом, на который необходимо выйти. 2. Измерить по карте ЗМПУ и расстояние до заданного пункта (рис. 19.7). 3. Стрелки счетчика координат установить на нуль. 4. На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5. На задатчике ветра установить навигационное направление ветра и его скорост ...
» Состав оборудования системы «Трасса» и принцип работы навигационного вычислителя В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1. Доплеровский измеритель путевой скорости и угла сноса (ДИСС). 2. Автоматическое навигационное устройство (АНУ); его называют также навигационным вычислителем. 3. Датчик курса. 4. Датчик воздушной скорости. 5. Задатчик угла карты. 6. Указатель угла сноса и путевой скорости. 7. ...
» Расчет истинной воздушной скорости по узкой стрелке КУС Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высотой в соответствии со стандартной атмосферой. Поэтому при температуре на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скоро ...
» Выход на исходный пункт маршрута В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на некотором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Маневр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...
» Контроль пути по направлению при полете по ортодромии При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).
» Использование НИ-50БМ для счисления пути При радиолокационной ориентировке для счисления пути по дальности может быть использован НИ-50БМ, для чего необходимо: 1. На подобранном курсе следования одним из возможных методов определить путевую скорость самолета. 2. На автомате курса и задатчике ветра установить МУК = ЗМПУ. 3. На задатчике ветра установить НВ=МУК, если W>V, или НВ=МУК±180°, если W
» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструментальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на изменение плотности воздуха.
» Поляра ротора Для аэродинамического расчета удобно иметь характеристики ротора, отнесенные к поступательной скорости V, т.е. коэффициенты подъемной силы и лобового сопротивления ротора. Определение коэффициентов подъемной силы и лобового сопротивления, а также качества ротора при определенном угле атаки ротора, а стало быть и получение поляры, можно вести двумя следующими способами. Способ непосредственного под ...
» Расчет вертикальной скорости снижения или набора высоты В практике самолетовождения бывают случаи, требующие смены эшелона полета. При необходимости диспетчер указывает экипажу время начала и окончания смены эшелона или задает участок, на котором должно быть произведено снижение. На основании указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке.
» Навигационное использование системы «Трасса»
Система «Трасса» может быть использована в следующих режимах: «ДИСС», «Память» и автономный режим работы навигационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а) Перед вылетом: 1. Установить на щитке управления левый переключатель в положение «Выключено», а правый — в положение «Суша» (при полете над водной пове ...
» Расчет приборной воздушной скорости для однострелочного указателя скорости Приборная воздушная скорость рассчитывается для того, чтобы по указателю скорости выдерживать в полете, если это требуется, заданную истинную воздушную скорость. Приборная воздушная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).
» Сущность устранения (компенсации) полукруговой девиации Очевидно, что для устранения полукруговой девиации необходимо при помощи постоянных магнитов создать силу, равную по величине и противоположную по направлению силе, вызывающей девиацию. Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи постоянных магнитов девиационного прибора.
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несущим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без разбега, зависать в воздухе, лететь в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппаратов. Задолго до официально признанных изобретателей вертолета великий русский ученый построил и испытал такой аппарат в России. Правда, еще в 1475 году гениальный флорентиец Леонардо да Винчи писал о возможности постройки аппарата с винтом. Но работы его были опубликованы только в конце XVIII столетия, и Ломоносову известны не были. Он первый обосновал и практически подтвердил идею аппарата, поднимающегося в воздух, используя энергию воздушного винта. 4 февраля 1754 года М. В. Ломоносов на собрании конференции Академии наук сделал сообщение об изобретении им специальной машины, могущей поднимать в верхние слои атмосферы саморегистрирующий анемометр и воздушный термометр. Под непосредственным руководством Ломоносова и по его чертежам такая «аэродинамическая» (воздухобежная) машина к июлю 1754 года была создана и опробована. Два четырехлопастных винта, вращаемые в разные стороны часовыми пружинами, создавали подъемную силу у этой модели. Изобретателем же вертолета очень часто называют француза Пауктона, которому в 1768 году удалось сконструировать небольшой геликоптер. В 1784 году Лонуа и Бьенвеню доложили французской Академии наук о постройке геликоптера-игрушки, поднимавшейся в воздух с помощью четырехлопастного винта, приводимого в движение тетивой из лука. Известный изобретатель А. Н. Лодыгин в 1869 году предложил проект вертолета, назвав его электролетом. Однако следует сказать, что все попытки поднять в воздух человека на подобных аппаратах были безуспешными. Изобретатели не располагали достаточно мощными и легкими двигателями. Начало XX столетия стало поворотным в истории верто-летостроения. В 1909 году студент МВТУ Б. Н. Юрьев, который впоследствии стал академиком, разработал проект оригинального вертолета. Для обеспечения управляемости и устойчивости аппарата в полете был предусмотрен автомат перекоса, позволяющий изменять угол наклона лопастей и благодаря этому наклонять вертолет в нужном направлении. После нескольких переделок в начале 1912 года Б. Н. Юрьеву удалось наконец построить геликоптер. Он был одновинтовым, причем диаметр винта достигал 8 м. В хвостовой части размещался рулевой винт. Из-за недостаточной мощности мотора пришлось отказаться от автомата перекоса и поворотных лопастей винта. Вертолет Б. Н. Юрьева экспонировался на международной выставке воздухоплавания в 1912 году, и автор был удостоен золотой медали. В 1910 году геликоптер массой 180 кг с двумя трехлопастными винтами построил студент Киевского политехнического института И. И. Сикорский, ставший вскоре известным авиационным конструктором. В последующие годы вер. толеты развития не получили так как предпочтение было отдано самолетам. И лишь после войны вертолеты заняли достойное место в современной авиации. Их можно встретить повсеместно, особенно в труднодоступных местах Арктике, пустыне, тайге. Вертолеты широко применяют для перевозки людей, для ледовой разведки, в сельском хозяйстве и т. д. Вертолеты сегодня незаменимы и в военном деле — для переброски десанта, воздушной разведки, охоты за подлодками и других операций. Современные вертолеты имеют различные конструктивные схемы. Одновинтовой вертолет (Ми-1, Ми-4) имеет один несущий ротор и хвостовой винт для компенсации реактивного момента и управления по курсу. Соосный вертолет (К-26) имеет два ротора, расположенных на одной оси и вращающихся в противоположных направлениях. Вертолет поперечной схемы (В-12) снабжен двумя роторами, размещенными по сторонам фюзеляжа на балках и вращающимися в противоположных направлениях. У вертолета продольной схемы (Як-24) два ротора, расположенные по концам фюзеляжа и вращающиеся в разных направлениях. Вертолет — единственный аппарат, который может выполнять два только ему свойственных режима полета — висение и авторотацию. В и-сение — неподвижное положение вертолета в воздухе, когда его вертикальная и горизонтальная скорости относительно окружающего воздуха равны нулю. Авторотация — режим работы ротора без подачи мощности от двигателя (самовращение). Ротор вращается под действием набегающего (снизу или сбоку) потока воздуха, создавая при этом тягу и подъемную силу.
Warning: Unknown: open(/var/lib/php/session/sess_mmqu4ajp00rttvophnie5nrig5, O_RDWR) failed: Permission denied (13) in Unknown on line 0
Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0