www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Модели самолетов с резиновым мотором » Схематическая модель са­молета
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Формулы полных сил ротора
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.

» Аэродинамический расчет автожира
Аэродинамический расчет автожира делается с целью определения его летных характеристик, как то:1)    горизонтальных скоростей - максимальных и минимальных, без снижения;2)    потолка;3)    скороподъемности;4)    скорости по траектории при крутом планировании.

» Использование курсовых приборов самолета Ан-24
Самолет Ан-24 оборудован гироскопическим индукционным ком­пасом ГИК-1 и гирополукомпасом ГПК-52, которые позволяют вы­полнять полет по заданному маршруту как по локсодромии, так и по ортодромии. При подготовке к полету штурман обязан решить, какой вид по­лета будет применяться, и в зависимости от этого подготовить и нанести на карту необходимые данные. Полеты по локсодромии рекомендуется осуществл ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Ракетомодельный спорт
В ракетомодельном спорте, также как и в авиамодельном, правила соревнований вырабатывает соответствующая меж­дународная федерация. Нацио­нальные федерации, принимая свой спортивный кодекс, стара­ются дублировать международ­ные правила — раздел «Косми­ческие модели» кодекса ФАИ. Но каждая страна вправе внес­ти какие-либо нововведения, уточнения, не изменяя при этом основополагающие требования ...

» Расчет показания широкой стрелки КУС для заданной истинной скорости
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V). Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

» Предотвращение случаев попаданий самолетов в зоны с особым режимом полетов
Над территорией СССР установлены определенные режимы полетов, обеспечивающие безопасность полетов по трассам, в воздушных зонах крупных центров страны и в районах аэродро­мов, а также предотвращающие случаи нарушения экипажами самолетов государственной границы Союза ССР и позволяющие осуществлять контроль за полетами самолетов.

» Расчет истинной и приборной воздушной скорости в уме
В полете не всегда имеется возможность рассчитать воздуш­ную скорость с помощью навигационной линейки. Поэтому необ­ходимо уметь приближенно рассчитать скорость в уме. Кроме то­го, такой расчет позволяет контролировать правильность инстру­ментальных, вычислений и тем самым предотвращать в них гру­бые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к ...

» Сущность истинного пеленга (ИП) и взаимозависимость пеленгов
Для контроля пути по дальности и определения места самолета запрашиваются истинные пеленги. Запрос пеленгов в телеграфном режиме осуществляется кодовым выражением ЩТЕ, в телефонном режиме — словами «Дайте истинный пеленг». Истинным пеленгом (ЩТЕ) называется угол, заключен­ный между северным направлением истинного меридиана, проходящего через радиопеленгатор, и ортодромическим направлением на ...

» Собственная устойчивость автожира
Благодаря шарнирному креплению лопастей ротора автожиру присуща собственная статическая устойчивость в форме маятниковой устойчивости, проявляющаяся в особенности при крутых спусках. Действительно, результирующая аэродинамических сил всегда проходит через втулку ротора, которую можно рассматривать как точку привеса для всего автожира. Центр тяжести автожира лежит под втулкой, отстоя от нее по высо ...

» Вывод самолета в заданный район
Для вывода самолета в заданный район необходимо: 1.  Соединить прямой линией место самолета с пунктом, на ко­торый необходимо выйти. 2.  Измерить по карте ЗМПУ и расстояние до заданного пунк­та (рис. 19.7). 3.  Стрелки счетчика координат установить на нуль. 4.  На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5.  На задатчике ветра установить навигационное направление ветра и его скорост ...

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Классификация высот полета от уровня измерения
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн ...

» Поликонические проекции
По принципу построения поликонические проекции незначи­тельно отличаются от конических. Они являются дальнейшим усо­вершенствованием конических проекций. В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к парал­лелям или секущих земной шар по заданным параллелям. На по­верхность каждого конуса переносится небольшой шаровой пояс земной ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Направления на земной поверхности
В самолетовождении принято направления на земной поверх­ности измерять в градусах относительно северного направления ме­ридиана. Направления могут указываться азимутом (истинным пе­ленгом) и путевым углом. Азимутом, или истинным пеленгом, ориентира назы­вается угол, заключенный между северным направлением мериди­ана, проходящего через данную точку, и направлением на наблю­даемый ориентир (рис. 1.4 ...

» Работа с картой
Определение координат пункта по карте. В практике самолето­вождения приходится производить некоторые расчеты по географи­ческим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1)  провести через заданный пункт отрезки прямых, параллель­ных ближайшей параллели и ближайшему меридиану; 2)  в точках пересеч ...

» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Запуск воздушных змеев
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых. В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по   всей   Польше   проводит ...

» Расчет общего запаса топлива с помощью графика
Для каждого полета рассчитывают количество топлива, необ­ходимое для заправки самолета. При этом исходят из того, что полет по трассе включает в себя следующие этапы: взлет и маневрирование в районе аэродрома взлета для выхо­да на линию заданного пути; набор заданного  эшелона; горизонтальный полет на заданном эшелоне по маршруту; снижение до высоты начала построения маневра захода на по­садку; ма ...

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Коробчатый воздушный змей
Коробчатый змей (рис. 4). Для его изготовления необхо­димы три основные рейки диа­метром 4,5 мм и длиной 690 мм и 12 коротких реек сечением 3X3 мм и длиной 230 мм. Ко­роткие рейки заостряют и встав­ляют на клею в основные под углом 60°. Оклеивают змей папиросной бумагой. Масса его 55—60 г.

» Расчет времени и места встречи самолетов, летящих на встречных курсах
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время   сближения самолетов tсбл= S'/ W1 + W2

» Определение путевой скорости самолета
При полете самолета от радиолокатора и на радиолокатор пу­тевая скорость определяется в следующем порядке: 1.  Запросить у диспетчера место самолета и заметить время. 2.  Через 7—10 мин полета снова запросить место самолета и заметить время. 3.  Определить пройденный самолетом путь как разность между полученными дальностями:   Sпр =Д2—Д1 или Sпр=Д1—Д2 4.  По пройденному расстояни ...

» Компоненты скорости воздуха относительно плоскости вращения ротора
Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежа­щую в плоскости вращения V cos  i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Модель электролета наборной конструкции
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки:   для   кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток ...

» Сущность устранения (компенсации) полукруговой девиации
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

» Использование РСБН-2 для захода на посадку
РСБН-2 при заходе на посадку позволяет: 1.  Производить «вписывание» самолета  в  установленную для данного аэродрома схему захода на посадку. 2.  Осуществлять контроль  полета по  установленной   схеме. 3.  Выводить самолет в зону курсового радиомаяка.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Схематическая модель са­молета
Строим сами летающие модели » Модели самолетов с резиновым мотором  |   Просмотров: 12696  
 
Схематическая модель са­молета (рис. 29) немного слож­нее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в нату­ральную величину). Порядок Работы может быть такой.
Фюзеляж делают из прямо­слойной сосновой или липо­вой рейки длиной 800 мм, сечением 12Х 10 мм, к хвосто­вой части сечение можно уменьшить до 8X6 мм.
Сечение передней и задней кромок стабилизатора 4Х ХЗ мм; закругления выги­бают из бамбуковой рейки сечением 3X2 мм и соеди­няют с кромками «на ус» клеем. Места соединения об­матывают нитками. Жесткость увеличивают тремя нервюрами сечением 2X2 мм. По черте­жу отмечают середину стаби­лизатора и закрепляют его на хвостовой части фюзеляжа, предварительно вырезав в нем небольшие углубления под кромки стабилизатора.
Киль из бамбуковой рейки изгибают и вставляют в от­верстие фюзеляжа, просвер­ленное немного ближе перед­ней кромки стабилизатора.
Схематическая модель са­молета

Рис. 29. Схематическая модель самолета: а -  рабочий чертеж; б — порядок изготовления
 
Подшипником служит ли­повый брусок размером 25Х Х20Х Ю мм. Его приклеивают к передней части фюзеляжа, снизу обматывают нитками. В подшипнике сверлят отвер­стие диаметром 1,5 мм, в ко­торое пропускают  вал  винта.
Для кромок крыла берут сосновые рейки сечением 5Х Х4 мм и изгибают их к сере­дине под углом 10°. Бамбу­ковые закругления крепят к кромкам так же, как на стаби­лизаторе. Нервюры изготов­ляют из сосновых реек сече­нием 3X2 мм, концы их заостряют «лопаткой» и встав­ляют с клеем в проколы кро­мок. Кабанчик для крепления крыла к фюзеляжу вырезают из липового бруска.  Следует помнить, что передняя кромка должна быть выше задней на 8—10 мм. Привязывают кабанчик   к   крылу   нитками.
Воздушный винт — самая сложная часть схематической модели самолета. Его изго­товляют из бруска липы, оль­хи или осины размером 300Х30X20 мм. На широкой грани бруска проводят две взаимно перпендикулярные осе­вые линии, в центре сверлят отверстие диаметром 1 мм. На­кладывают фанерный или цел­лулоидный шаблон вида свер­ху, совмещая осевые линии и очерчивая одну лопасть, затем поворачивают шаблон на 180° вокруг оси и наносят контуры другой лопасти. Ост­рым ножом срезают лишнюю часть бруска и обрабатывают напильником. На одну из бо­ковых граней накладывают шаблон вида сбоку, очерчи­вают его карандашом и сре­зают лишнее. В дальнейшем винт обрабатывают с верхнего правого края каждой лопасти.
Верхняя поверхность ло­пастей должна быть слегка выпуклой, а нижняя — плос­кой или немного вогнутой. Вогнутость достигают, соскаб­ливая древесину осколком стек­ла или полукруглым напиль­ником.
Зачищают лопасти наждач­ной бумагой, одновременно Центрируя винт. Для этого на­девают его на тонкую прово­локу и вращают. Если масса лопастей винта одинакова, он остановится в горизонтальном положении. Если нет, необхо­димо опускающуюся лопасть доработать напильником или зачистить наждачной бумагой и вновь проверить центровку винта,  добиваясь  равновесия.
Готовый винт покрывают двумя-тремя слоями нитрола­ка. В ступице винта закреп­ляют вал из стальной прово­локи диаметром 1,5 м, наде­вают на него две шайбы и вставляют в подшипник. Сво­бодный конец вала изгибают в виде крючка для крепления резинового двигателя. Другой крючок для двигателя крепят в хвостовой части фюзеляжа на расстоянии 600 мм от подшипника.
Обтягивают модель самоле­та так же, как и модель пла­нера, папиросной или мика-лентной бумагой. Обтяжку крыла производят только свер­ху в два приема: сперва одну половину, потом — другую.
Стабилизатор оклеивают только сверху, а киль — с обеих сторон. Бумагу, высту­пающую за кромки, счищают наждачной бумагой или ост­рым ножом.
Резиновый двигатель дли­ной 600 мм изготовляют из резины сечением 2Х 1 мм. Для этого с доску вбивают два гвоздя на расстоянии, равном длине резинового дви­гателя, резиновую нить массой 30 г обматывают вокруг гвоз­дей, а свободные концы связы­вают. В местах крепления двигатель перевязывают тон­кой резинкой.
Готовый резиновый двига­тель промывают в теплой мыль­ной воде, просушивают вда­ли от источников тепла, сма­зывают касторовым маслом и упаковывают на несколько дней в темную стеклянную банку.
Для определения максималь­ного числа витков двигате­лей один из них следует закрутить до разрыва. Зная возможности резиновых дви­гателей данной длины, можно провести их динамическую формовку. Наиболее простой способ формовки заключается в последовательном закручи­вании и раскручивании рези-номотора. Начинают закрутку с 20 % допустимого числа витков с последующим добав­лением 10—15 % от макси­мального числа витков. Закан­чивают формовку закруткой на 80—85 % максимального числа витков. После этого сно­ва промывают резиновый дви­гатель в теплой мыльной воде, просушивают, смазывают ка­сторовым маслом и упаковы­вают в полиэтиленовый пакет или стеклянную банку. Вы­держав одну-две недели, такой двигатель можно использовать на соревнованиях. Иногда ди­намическую формовку двига­телей удобно делать и при тренировочных запусках.
Регулировку модели прово­дят следующим образом. Сна­чала проверяют, нет ли пере­косов при видах сверху и спе­реди. Перемещением крыла вдоль рейки устанавливают центр тяжести модели с рези­новым двигателем на расстоя­нии 1/3 длины хорды крыла от передней кромки.
Добившись правильной цен­тровки, модель регулируют на планирование (без работы вин­та), так же как и схемати­ческую модель планера: дер. жа модель одной рукой за фюзеляж, немного наклонив носовую часть вниз, плавным движением толкают ее. Если модель задирает нос, крыло передвигают к стабилизатору. При крутом опускании (пики­ровании) модели крыло пере­мещают вперед. Хорошо отре­гулированная модель должна пролетать 8—12 м.
Более сложный этап — это регулировка моторного поле­та. Закрутив резиновый дви­гатель на 50—60 витков, мо­дель берут за фюзеляж правой рукой, а левой придерживают винт. Легким толчком пускают модель горизонтально. Повто­ряют несколько раз запуск модели, постепенно увеличи­вая  число  витков  двигателя.
Сложность регулирования модели самолета заключается в том, что при моторном полете (с работающим вин­том) возникают новые явле­ния, которые не наблюдались при планирующем полете. Вы­делим основные из них, опи­шем их признаки и при­чины.
Модель, планирующая по прямой, кружит в моторном полете, стремясь повернуть в левую сторону (вращение вин­та вправо по направлению полета). Это происходит из-за влияния силы реакции от вра­щения винта. Величина дан­ной силы связана жесткой зависимостью с частотой его вращения и диаметром винта. Авиамоделисты      исправляют этот дефект смещением вала винта вправо или отклонением киля в эту же сторону.
Модель может кружиться также из-за несимметрии масс, различной кривизны профиля нервюр у обеих половин кры­ла и по другим причинам.
При малой закрутке рези­нового двигателя модель летит хорошо, а при большой не набирает высоты. Причина — слабая рейка-фюзеляж, когда сильно закрученный двигатель сгибает рейку. В этом случае рекомендуется поставить свер­ху ее растяжки или заменить более прочной.
Как уже упоминалось ра­нее, иногда модель в мотор­ном полете трясет, и чем боль­ше закрутка резинового двига­теля, тем сильнее. В этом слу­чае сказывается дисбаланс ло­пастей воздушного винта или неверный изгиб крючка вала винта.
Если после запуска модель стремительно набирает высоту и пытается сделать петлю, необходимо сместить вал вин­та вниз. А если модель мед­ленно набирает высоту, пере­мещают вал винта вверх.
Регулировать моторный по­лет лучше смещением вала винта, а планирующий — пере­движением крыла вдоль фюзе­ляжа (изменением центровки), изменением угла атаки крыла и поворотом киля.

Распечатать ..

 
Другие новости по теме:

  • Резиномоторная модель са­молета «Малютка»
  • Резиномоторная модель са­молета класса В-1
  • Модель самолета из пено­пласта
  • Фюзеляжная модель самолета с резиновым двигателем
  • Модель планера «Малыш»


  • Rambler's Top100
    © 2009