» Определение места самолета Место самолета определяется с целью полного контроля пути, определения навигационных элементов полета и восстановления потерянной ориентировки. В зависимости от условий полета и навигационной обстановки МС может быть определено: по одному радиопеленгатору; по двум радиопеленгаторам; по радиопеленгатору и радиостанции.
» Расчет времени и места встречи самолетов, летящих на встречных курсах Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самолетами контрольных ориентиров. Время сближения самолетов tсбл= S'/ W1 + W2
» Сущность визуальной ориентировки Одним из основных правил самолетовождения является непрерывное сохранение ориентировки в течение всего полета. Сохранять ориентировку — это значит в любое время полета знать место самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ориентировка может осуществляться визуально и при помощи технических средств самолетовождения.
» Планирование занятий авиакружка Единой программы для авиакружка пионерского лагеря не существует. Да в этом и нет необходимости. Ведь объекты практической работы, ее последовательность определяются конкретными условиями — обеспечением материалами и инструментом, квалификацией руководителя и даже той местностью, где расположен пионерлагерь. Если кругом лес и нет возможности запускать свободнолетающие модели, то сл ...
» Ориентирование карты по странам света Ориентировать карту по странам света — это значит расположить ее так, чтобы северные направления истинных меридианов карты были направлены на север. В практике самолетовождения ориентирование карты по странам света осуществляют по компасу или земным ориентирам.
» Резиномоторная модель самолета класса В-1 Резиномоторная модель самолета класса В-1 (рис. 31) может рассматриваться как шаг к спортивному совершенствованию в категории сво-боднолетающих моделей.
» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструментальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на изменение плотности воздуха.
» Способы определения путевой скорости в полете Путевая скорость в полете может быть определена одним из следующих способов:1) по известному ветру (на НЛ-10М, расчетчике, ветрочете и в уме);2) по времени пролета известного расстояния (по отметкам места самолета);3) по времени пролета расстояния, определяемого с помощью самолетного радиолокатора или радиотехнических систем;4) по высоте полета и времени пробега визирной точкой и ...
» Защита для жиклера Устанавливая микродвигатели с передним распределением на модели воздушного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у моторов, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жиклер. Выход из этого положения весьма прост: достаточно выпилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный предох ...
» Модель планера Модель планера — конструкция, которая воспроизводит лишь схему основных частей планера, не копирующая его внешне. Знакомство с моделями планеров лучше начать с самой простой модели, изготовленной из бумаги. В практике авиамоделизма ее называют учебной (рис. 16).
» Особенности самолетовождения на малых высотах Условия самолетовождения на малых высотах. Полетами на малых высотах называются полеты, выполняемые на высотах до 600 м над рельефом местности. Такие полеты могут быть преднамеренными (при выполнении различных видов работ авиацией специального применения), учебными (согласно программам летной подготовки) и вынужденными (по различным причинам).
» Выполнение радиодевиационных работ Радиодевиационные работы проводятся штурманом с целью определения, компенсации радиодевиации и составления графика остаточной радиодевиации в следующих случаях: 1) при установке на самолет, нового радиокомпаса или отдельных его блоков; 2) после выполнения регламентных работ, при которых заменялись отдельные блоки радиокомпаса; 3) при обнаружении в полете ошибок в показаниях указателя курсовы ...
» Собственная устойчивость автожира Благодаря шарнирному креплению лопастей ротора автожиру присуща собственная статическая устойчивость в форме маятниковой устойчивости, проявляющаяся в особенности при крутых спусках. Действительно, результирующая аэродинамических сил всегда проходит через втулку ротора, которую можно рассматривать как точку привеса для всего автожира. Центр тяжести автожира лежит под втулкой, отстоя от нее по высо ...
» Ортодромия и локсодромия
Путь самолета между двумя заданными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прокладки пути зависит от оснащенности самолета навигационным оборудованием. Каждая из указанных линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверхности земного шара (рис. ...
» Авиационный моделизм Из всех видов технического творчества самый распространенный — авиационный моделизм. Организованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно. Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают конструировать авиамо ...
» Расчет истинной воздушной скорости по узкой стрелке КУС Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высотой в соответствии со стандартной атмосферой. Поэтому при температуре на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скоро ...
» Изображение ориентиров на экране индикатора Для распознавания наблюдаемой на экране индикатора световой картины необходимо знать, как выглядят на экране различные наземные объекты.
» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1. Произвести внешний осмотр щитков управления и приборов системы, установленных на самолете. 2. Убедиться, что горизонтальная и вертикальная стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС с помощью винтов с надписью «К» и «Г» на КППМ д ...
» Расчет элементов захода на посадку по малому прямоугольному маршруту в штиль Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий международной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самолетов, имеющих приборную скорость пол ...
» Предотвращение случаев попаданий самолетов в районы с опасными для полетов метеоявлениями
Для предотвращения случаев попадания в районы с опасными для полетов метеоявлениями необходимо: 1) перед полетом тщательно изучить метеообстановку по трассе и прилегающим к ней районам; 2) наметить порядок обхода опасных условий погоды; 3) наблюдать в полете за изменением погоды, особенно за развитием явлений, опасных для полетов; 4) периодически получать по радио сведения о сос ...
» Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, ре ... Навигационная система «Трасса» предназначена для непрерывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямоугольной системе координат (дальность и линейное боковое уклонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является измеритель путевой скорости и угла сноса, исп ...
» Устранение установочной ошибки рамки радиокомпаса Блок рамки устанавливается на самолет так, чтобы направление курсовой черты, отмеченное рисками на основании рамки, совпало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет равна нулю. Установочной ошибкой рамки радиокомпаса называется угол, на который отклоняется стрелка указателя от нулевого деления шкалы при КУР = 0°. Э ...
» Установка самолета на заданный магнитный курс Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как Δк = МК - КК. Самолет устанавливается на заданный МК: 1) пеленгованием продольной оси самолета; 2) по магнитному пеленгу ориентира.
» Инструмент и материалы для авиакружка Говорить об оснащении кружка пионерского лагеря станочным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального помещения. Как показывает практика, станок «Умелые руки» вполне доступен любому кружку и обладает широкими возможностями в работе. Для нормальной работы авиакружка необходим инструмент общего и индивидуального пользования. Основной инстр ...
» Определение путевой скорости самолета При полете самолета от радиолокатора и на радиолокатор путевая скорость определяется в следующем порядке: 1. Запросить у диспетчера место самолета и заметить время. 2. Через 7—10 мин полета снова запросить место самолета и заметить время. 3. Определить пройденный самолетом путь как разность между полученными дальностями: Sпр =Д2—Д1 или Sпр=Д1—Д2 4. По пройденному расстояни ...
» Модель вертолета чешских авиамоделистов Модель вертолета чешских авиамоделистов (рис. 53) напоминает настоящий геликоптер. Фюзеляж заодно с килем вырезают из пластины пенопласта толщиной 5 мм и по периметру фигуры окантовывают липовыми рейками сечением 5X1 мм. В качестве силовой балки используют сосновую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшипник винта, а с другого привязывают крючок из прово ...
» Компоненты скорости воздуха относительно плоскости вращения ротора Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежащую в плоскости вращения V cos i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя ...
» Порядок ведения визуальной ориентировки и точность определения места самолета Для быстрого и правильного определения места самолета визуальной ориентировкой необходимо соблюдать следующий порядок: 1. Определить на карте район вероятного местонахождения самолета, для чего от последней отметки МС отложить направление полета и пройденное расстояние, т. е. выполнить прокладку пути по курсу, скорости и времени полета. 2. В пределах найденного района выбрать на карте х ...
» Перевод футов в метры и обратно Футы переводятся в метры, а метры в футы по формулам: Hм = Hфуты:3,28; Hфуты = Нм·3,28. Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).
Компасным меридианом называется линия, вдоль которой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпадают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного меридианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к западу (влево) со знаком минус.
Курсом самолета называется угол, заключенный между северным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета относительно меридиана. Курс самолета может быть истинным, магнитным и компасным в зависимости от меридиана, от которого он отсчитывается. Истинным курсом ИК называется угол, заключенный между северным направлением истинного меридиана, проходящего через самолет, и продольной осью самолета.
Заданный путевой угол может быть истинным и магнитным в зависимости от меридиана, от которого он отсчитывается (рис. 3.7). Заданным магнитным путевым углом ЗМПУ называется угол, заключенный между северным направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчитывается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и измеряется на карте при помощи транспортира по среднему истинному меридиану данного участка маршрута с последующим учетом магнитного склонения.
Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного меридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часовой стрелки от 0 до 360°.
Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвестна, практически нельзя, так как она может достигать больших значений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, электро- и радиооборудования. Однако эта мера не позволяет полностью устранить девиацию. Поэтому компасы снабжены девиационными приборами, позволяющими уменьшить девиацию. Остаточная девиация списывается, заносится в график и учитывается при переводе курсов.
На картушку магнитного компаса, установленного на самолете, действуют следующие поля: 1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану); 2) постоянное магнитное поле самолета; 3) переменное магнитное поле самолета; 4) электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.
На стрелку компаса, установленного на самолете, в горизонтальной плоскости одновременно оказывают действие шесть магнитных сил. 1. Сила λH, действующая в направлении магнитного меридиана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо, намагниченное земным магнетизмом. Направление этой силы не зависит от курса самолета. Ее величина изменяется с изменением магнитной широты места. Эта сила стремится установить стрелку компаса вдоль магнитного меридиана и девиации не вызывает (рис. 3.12).
Очевидно, что для устранения полукруговой девиации необходимо при помощи постоянных магнитов создать силу, равную по величине и противоположную по направлению силе, вызывающей девиацию. Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи постоянных магнитов девиационного прибора.
Девиационный пеленгатор предназначен для определения магнитных пеленгов ориентиров, фактического МК самолета и установки последнего на заданный МК. Устройство пеленгатора показано на рис. 3. 15. Визирная рамка 3 состоит из глазного (с прорезью) и предметного (с нитью) диоптров. Она может вращаться вокруг вертикальной оси относительно азимутального лимба 1 или быть застопоренной. С помощью индекса 4 обозначается продольная ось самолета. Уровень 5 служит для установки лимба в горизонтальное положение, а шаровой шарнир 7 — для установки в заданном положении. При помощи кронштейна 8 девиационный пеленгатор крепится на треноге или на самолете.
Для определения МПО необходимо: 1) установить треногу в центре площадки, где будет списываться девиация; 2) закрепить пеленгатор на треноге и установить его в горизонтальное положение по уровню; 3) отстопорить лимб и магнитную стрелку; 4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб; 5) разворачивая визирную рамку и наблюдая через прорезь глазного диоптра, направить нить предметного диоптра на выбранный ориентир; 6) против риски предметного диоптра по шкале лимба отсчитать МПО.
Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как Δк = МК - КК. Самолет устанавливается на заданный МК: 1) пеленгованием продольной оси самолета; 2) по магнитному пеленгу ориентира.
При подготовке к выполнению девиационных работ необходимо: 1) проверить состояние девиационного пеленгатора и исправность его магнитной системы; 2) выбрать площадку для девиационных работ, удаленную не менее чем на 150—200 м от стоянок самолетов, строений и линий высоковольтных передач; площадка должна быть ровной и иметь хороший обзор; 3) измерить из центра площадки при помощи девиационного пеленгатора магнитные пеленги одного-двух ориентиров, удаленных не менее чем на 3—5 км; 4) проверить наличие штатного оборудования на самолете; 5) осмотреть компас, проверить его исправность и определить угол застоя и время успокоения картушки; 6) установить в нейтральное положение магниты девиационного прибора, а у компаса ГИК-1, кроме того, установить регулировочные винты лекала коррекционного механизма в средние положения; 7) подготовить протокол выполнения девиационных работ, бланк графика и антимагнитную отвертку.
При устранении девиации гироиндукционного компаса ГИК-1 необходимо: 1. Установить регулировочные винты коррекционного механизма в их среднее положение. При выпуске компаса с завода регулировочные винты лекального устройства устанавливаются в среднее положение, при котором коррекционный механизм обеспечивает устранение остаточной девиации в пределах ±6°. В процессе предыдущего устранения девиации регулировочные винты смещаются в различные положения.
На самолетах с ГТД датчики дистанционных компасов установлены в местах, где, как показали результаты исследований, действие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА издал специальное указание, согласно которому:
Навигационная линейка НЛ-10М является счетным инструментом пилота и штурмана и предназначена для выполнения необходимых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающих в определенном масштабе логарифмы этих чисел.
Навигационная линейка имеет не равномерные шкалы, а логарифмические. При решении задач с помощью НЛ-10М используется одновременно две, а иногда и больше шкал, которые называются смежными.
Умножение и деление чисел на НЛ-10М выполняется по шкалам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямоугольный индекс с цифрой.10 или 100 шкалы 2 установить на множимое, а пробив множителя отсчитать по шкале 1 искомое произведение.
Значения синуса и косинуса данного угла α на НЛ-10М определяются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на деление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в долях единицы). Значение косинуса угла α отсчитывается против угла 90° — α (рис. 4.3).
Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчитать на шкале 5 искомое произведение числа на синус угла α, a против угла 90° — α — искомое произведение числа на косинус угла α (рис. 4.4).
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов. Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение заданного угла α шкалы 3 (при делении числа на синус угла) или угла 90° — α (при делении числа на косинус α) и против треугольного индекса шкалы 4 отсчитать на шкале 5 искомое частное (рис. 4.5). Пример. Дан угол α=50°; число равно 250. Определить частное от деления 250 на синус и косинус угла 50°.