www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Основы авиационной картографии » Основные географические понятия - Форма и размеры Земли
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Расчет времени и места встречи самолетов, летящих на встречных курсах
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время   сближения самолетов tсбл= S'/ W1 + W2

» Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и задачи, решаемые с его помощь ...
Одной из важнейших задач, выполняемых экипажем самоле­та в полете, является сохранение ориентировки. Ее решение до­стигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях ви­зуальную ориентировку не всегда можно применить, а определе­ние места самолета с помощью радиотехнич ...

» Расчет времени и места набора высоты заданного эшелона
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна. Рис. 5.5. Определение времени и места набора высоты ...

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» Подготовка к полету с использованием РСБН-2
Опыт использования РСБН-2 показывает, что достаточно пол­ная реализация возможностей этой системы прежде всего зави­сит от заблаговременной  подготовки  данных  для ее применения и оперативностиработы экипажа в полете, поэтому экипажи са­молетов, на которых установлена   аппаратура   РСБН-2,   обязаны    в   период   предварительной подготовки к полету подготовить по всем участкам трассы необходим ...

» Расчет истинной воздушной скорости по узкой стрелке КУС
Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высо­той в соответствии со стандартной атмосферой. Поэтому при тем­пературе на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скоро ...

» Особенности самолетовождения на малых высотах
Условия самолетовождения на малых высотах. Полетами на малых высотах называются полеты, выполняемые на высотах до 600 м над рельефом местности. Такие полеты могут быть пред­намеренными (при выполнении различных видов работ авиацией специального применения), учебными (согласно программам лет­ной подготовки) и вынужденными (по различным причинам).

» Использование РСБН-2 для захода на посадку
РСБН-2 при заходе на посадку позволяет: 1.  Производить «вписывание» самолета  в  установленную для данного аэродрома схему захода на посадку. 2.  Осуществлять контроль  полета по  установленной   схеме. 3.  Выводить самолет в зону курсового радиомаяка.

» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА
Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1.  Произвести внешний осмотр  щитков управления   и   прибо­ров системы, установленных на самолете. 2.  Убедиться,   что горизонтальная   и    вертикальная    стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС   с помощью винтов с над­писью «К» и «Г» на КППМ д ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Основные систе­мы и агрегаты самолета
Все современные самолеты сходны по устройству, имеют одни и те же основные систе­мы и агрегаты. Крыло — главная часть самолета — создает подъем­ную силу, удерживающую его в воздухе. У разных само­летов крылья отличаются раз­мерами, формой и числом. Самолет с одним крылом на­зывают монопланом, а имеющий два крыла (одно над   другим) — бипланом. Конструкция крыла зави­сит от типа с ...

» Карты, применяемые в авиации - Назначение карт
В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1)   прокладки и изучения маршрута полёта; 2)   измерения путевых углов и   расстояний    между   пунктами маршрута; 3)   определения географических координат пунктов; 4)   нанесения точек расположения радиотехнических    средств, обеспечивающих полет; 5)   получения ...

» Расчет ИПС при полете по ортодромии
При полете по ортодромии для прокладки радиопеленга на карте нужно рассчитать ИПС (рис. 23.11). Когда курс выдержи­вается относительно магнитного опорного меридиана, ИПС рас­считывается по следующей формуле: ИПС = ОМК + (± Δм.о.м) + КУР ± 180° — (± α), где σ = (λо.м — λр) sin φcp.

» Основные правила самолетовождения - Порядок выполнения маршрутного полета
Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установлен­ным маршрутам. В основе успешного выполнения полетов лежит строгое соблю­дение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1)   сохранять ориентировку в течение вс ...

» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ...
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

» Порядок ведения визуальной ориентировки и точность определения места самолета
Для быстрого и правильного определения места самолета ви­зуальной ориентировкой необходимо соблюдать следующий поря­док: 1.  Определить на карте район вероятного местонахождения са­молета, для чего от последней отметки МС отложить направление полета и пройденное расстояние,    т. е. выполнить    прокладку пути по курсу, скорости и времени полета. 2.  В пределах найденного района выбрать на карте х ...

» Уравнение махового движения лопасти
Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)

» Модель самолета из пено­пласта
Модель самолета из пено­пласта (рис. 28) разработана авиамоделистами СЮТ г. Элек­тростали. За основу взят чер­теж модели самолета «Вилга-2» и полумакет чехословацких мо­делистов, изготовленный из бальзы. Строительный материал для этого микросамоле­та — пенопласт (упаковочный или ПС-4-40).

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Основные сведения о РСБН-2
Радиотехническая система РСБН-2 является неавтономной системой самолетовождения. Она состоит из наземного и самолетного оборудования. Система работает на ультракоротких волнах, поэтому обмен сигналами между самолетом и наземным маяком возможен лишь на дальностях прямой видимости, которая в основном зависит от высоты полета (табл. 18.1) и может быть определена по формуле: Д км=3,57 √Нм.

» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Модель воздушного боя
Модели воздушного боя, или как их часто называют «бойцовки», несомненно, держат первенство среди всех кор­довых летательных аппара­тов. Обилие всевозможных схем и конструкторских ре­шений — наглядное подтверж­дение сказанному. Знакомство с этим классом авиационных моделей начнем с несложной «бойцовки», разработанной в пионерском лагере «Родник», где много лет автор был руководителем   авиакр ...

» Расчет максимальной дальности рубежа возврата на аэродром вылета и на запасные аэродромы
Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может слу ...

» Ошибки указателя воздушной скорости
Указатель воздушной скорости имеет инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки ΔV возникают по тем же причинам, что и аналогичные ошибки высотомера. Они определяются путем сличения показаний указателя скорости с показания­ми точно выверенного прибора, заносятся в график или таблицу и учитываются при расчете скорости.

» Расчет времени и места догона впереди летящего самолета
Чтобы рассчитать время догона впереди летящего самолета, необходимо знать расстояние между самолетами, путевые скорости и время пролета самолетами контрольного ориентира. Время   догона   впереди летящего   самолета t дог =S/ W2 — W1

» Магнитные поля, действующие на картушку компаса, установленного на самолете
На картушку магнитного компаса, установленного на самолете, действуют следующие поля: 1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану); 2)  постоянное магнитное поле самолета; 3)   переменное магнитное поле самолета; 4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

» Зависимость между ортодромическим, истинным и магнитным курсами
При полете по ортодромии в каждый отдельный момент орто-дромический курс, который выдерживается по КС или по ГПК-52, отличается от магнитного курса, измеренного магнитным компа­сом.

» Перевод футов в метры и обратно
Футы переводятся в метры, а метры в футы по формулам: Hм = Hфуты:3,28; Hфуты = Нм·3,28. Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Основные географические понятия - Форма и размеры Земли
Самолетовождение » Основы авиационной картографии  |   Просмотров: 10570  
 
На основании многочисленных геодезических измерений уста­новлено, что Земля представляет собой небесное тело, не имеющее простой геометрической формы. За геометрическое тело, близкое к истинной форме Земли, принят геоид.
Геоидом называется геометрическое тело, ограниченное ус­ловной (уровенной) поверхностью, которая является продолжени­ем поверхности океанов в их спокойном состоянии. Геоид не имеет простого математического выражения, поэтому производить точ­ные вычисления по его данным очень сложно. Для упрощения раз­личных вычислений геоид заменяют эллипсоидом вращения, кото­рый имеет правильную геометрическую форму и незначительно от­личается от геоида.
Эллипсоидом вращения называется геометрическое тело, образованное вращением эллипса вокруг его малой оси.
Впервые размеры Земли были определены в глубокой древности. Но они были приближенны. Поэтому на протяжении многих лет в ряде стран велись работы по уточнению размеров земного эллип­соида.
В Советском Союзе группа ученых под руководством члена-кор­респондента Академии наук СССР профессора Ф. Н. Красовского (1878—1948 гг.) произвела многочисленные измерения на огром­ной территории Земли и в результате обработки полученных дан­ных определила более точные размеры земного эллипсоида. Этот эллипсоид положен в основу всех топогеодезнческих и картографических работ на территории СССР и других социалистических стран Ев­ропы и Азии. Он имеет следующие характеристики (рис. 1.1):
большая полуось    (экваториальный радиус) а = 6378,245 км;
малая полуось   (полярный радиус)  b = 6356,863 км;
полярное сжатие = полярное сжатие  = 0,00335233.                                   
Величина сжатия Земли у полюсов является   незначительной.   Она составляет   всего  лишь   21,382  км. Следовательно, форма Земли мало отличается от шара. Поэтому для упрощения решения многих задач самолетовождения сжатием Земли пренебрегают и принимают Землю условно за шар (сферу), радиус которого R=6371 км.
Максимальные ошибки от замены эллипсоида шаром не превышают ±0,5% в определении расстояния и ±12' в определении углов. 
 
Элипсоид Академии наук СССР профессора Ф. Н. Красовского

Распечатать ..

 
Другие новости по теме:

  • Длина дуги меридиана, экватора и параллели
  • Основные точки, линии и круги на земном шаре
  • План и карта
  • Курсы самолета девиация магнитных компасов
  • Сущность картографических проекций и их классификация


  • Rambler's Top100
    © 2009