www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Основы авиационной картографии » Ортодромия и локсодромия
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Формулы полных сил ротора
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.

» Модель ракеты «Родник»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают ...

» Поляра ротора
Для аэродинамического расчета удобно иметь характеристики ротора, отнесенные к поступательной скорости V, т.е. коэффициенты подъемной силы и лобового сопротивления ротора. Определение коэффициентов подъемной силы и лобового сопротивления, а также качества ротора при определенном угле атаки ротора, а стало быть и получение поляры, можно вести двумя следующими способами. Способ непосредственного под ...

» Устранение установочной ошибки рамки радиокомпаса
Блок рамки устанавливается на самолет так, чтобы направле­ние курсовой черты, отмеченное рисками на основании рамки, сов­пало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет рав­на нулю. Установочной ошибкой рамки радиокомпаса на­зывается угол, на который отклоняется стрелка указателя от нуле­вого деления шкалы при КУР = 0°. Э ...

» Ошибки указателя воздушной скорости
Указатель воздушной скорости имеет инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки ΔV возникают по тем же причинам, что и аналогичные ошибки высотомера. Они определяются путем сличения показаний указателя скорости с показания­ми точно выверенного прибора, заносятся в график или таблицу и учитываются при расчете скорости.

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

» Самолетовождение с использованием наземных радиолокаторов - Назначение наземных радиолокаторов и зад ...
Наземные радиолокаторы относятся к смешанным автономным радиотехническим средствам и представляют собой стационарные или передвижные приемопередающие радиотехнические устройст­ва, работающие в импульсном режиме в сантиметровом или метровом диапазоне волн. Они предназначены для контроля за движением самолетов и для решения задач самолетовож­дения. Наземные радиолокаторы с индикаторами кругового обз ...

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» Классификация авиационных карт по назначению
По своему назначению карты, применяемые в гражданской - авиации, делятся: на полетные, применяемые для самолетовождения по трас­сам и маршрутам в районе полетов; на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астроно­мических средств; на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения м ...

» Состав оборудования системы «Трасса» и принцип работы навигационного вычислителя
В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1.  Доплеровский   измеритель  путевой   скорости   и   угла сноса (ДИСС). 2.  Автоматическое  навигационное  устройство   (АНУ);   его на­зывают также навигационным вычислителем. 3.  Датчик курса. 4.  Датчик воздушной скорости. 5.  Задатчик угла карты. 6.  Указатель угла сноса и путевой скорости. 7. ...

» Движение лопастей
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.

» Путевые углы и способы их определения
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7). Заданным  магнитным путевым   углом   ЗМПУ   называется       угол,     заключенный между северным    направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Планирование занятий авиа­кружка
Еди­ной программы для авиа­кружка пионерского лагеря не существует. Да в этом и нет необходимости. Ведь объекты практической рабо­ты, ее последовательность определяются конкретными условиями — обеспечением ма­териалами и инструментом, квалификацией руководителя и даже той местностью, где рас­положен пионерлагерь. Если кругом лес и нет возмож­ности   запускать   свободнолетающие модели, то сл ...

» Классификация высот полета от уровня измерения
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн ...

» Ракета— летательный аппа­рат тяжелее воздуха
Ракета— летательный аппа­рат тяжелее воздуха, подъем­ная сила которого возникает по принципу реактивного дви­жения. Этот принцип заклю­чается в отталкивании ра­кеты от массы струи газов, образованных при сгорании топлива и истекающих из двигателя. Своим рождением первые ракеты обязаны изобретению пороха. Но в те далекие вре­мена ракеты служили лишь для фейерверков. Потом они нашли применение ...

» Схематическая модель са­молета
Схематическая модель са­молета (рис. 29) немного слож­нее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в нату­ральную величину). Порядок Работы может быть такой. Фюзеляж делают из прямо­слойной сосновой или липо­вой рейки длиной 800 мм, сечением 12Х 10 мм, к хвосто­вой части сечение можно уменьшить до 8X6 мм.

» Аэродинамический расчет автожира
Аэродинамический расчет автожира делается с целью определения его летных характеристик, как то:1)    горизонтальных скоростей - максимальных и минимальных, без снижения;2)    потолка;3)    скороподъемности;4)    скорости по траектории при крутом планировании.

» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира
Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Списывание радиодевиации - Причины радиодевиации и ее характер
Работа радиокомпаса основана на использовании направленной характеристики приема радиоволн рамочной антенной. С помощью такой антенны (рамки) определяется направление, с которого приходят радиоволны к самолету. Однако не всегда рамка радиоком­паса устанавливается в направлении на радиостанцию. Обычно при пеленговании наземных радиостанций рамка радиокомпаса устанавливается в направлении, которое о ...

» Порядок ведения визуальной ориентировки и точность определения места самолета
Для быстрого и правильного определения места самолета ви­зуальной ориентировкой необходимо соблюдать следующий поря­док: 1.  Определить на карте район вероятного местонахождения са­молета, для чего от последней отметки МС отложить направление полета и пройденное расстояние,    т. е. выполнить    прокладку пути по курсу, скорости и времени полета. 2.  В пределах найденного района выбрать на карте х ...

» Определение остаточной радиодевиации и составление графика радиодевиации
Остаточная радиодевиация определяется с целью обнаружения ошибок и неточностей, допущенных в процессе выявления и ком­пенсации радиодевиации. Для определения остаточной радиодевиации самолет последо­вательно устанавливается на 24 ОРК, на каждом ОРК определяет­ся КУР и вычисляется радиодевиация, которая записывается в протокол. Радиодевиация считается скомпенсированной, если на КУР = 0° она равна н ...

» Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высот ...
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

» Основные точки, линии и круги на земном шаре
Земля непрерывно вращается с запада на восток. Диаметр, во­круг которого происходит это вращение, называется осью враще­ния Земли (рис. 1.2). Эта ось пересекается с поверхностью Земли в двух точках, ко­торые называются географическими полюсами: один Се­верным (С), а другой Южным» (Ю). Северным называется тот по­люс, в котором, если смотреть на него сверху, вращение Земли на­правлено против хода ча ...

» Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) =   =   =111 км. 1ґ дуги меридиана (экватора) =   = 1,852 км = 1852 м.

» Подготовка данных для применения КС-6
Для применения КС-6 в полете в различных режимах работы нужно предварительно на земле подготовить необходимые дан­ные. Для использования КС в режиме «ГПК» при подготовке к по­лету необходимо произвести дополнительную разметку маршрута для полета по ортодромии. В этом случае, кроме обычной проклад­ки и разметки маршрута, необходимо:

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Ортодромия и локсодромия
Самолетовождение » Основы авиационной картографии  |   Просмотров: 42102  
 
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных  линий пути имеет определенные свойства.
Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. 1.5).
 
Ортодромия и локсодромия
 
Ортодромия обладает следующими свойствами:
1)   является линией кратчайшего расстояния между двумя точ­ками на поверхности земного шара;
2)   пересекает меридианы под различными, неравными между собой углами вследствие схождения меридианов у полюсов.
Экватор и меридианы являются частными случаями ортодро­мии. Через две точки на земной поверхности, расположенные не на противоположных концах прямой, проходящей через центр Зем­ли, можно провести только одну ортодромию. Условились путь са­молета по ортодромии называть ортодромическим, а направ­ление полета по ортодромии указывать ортодромическим путевым углом (ОПУ), заключенным между северным направ­лением меридиана и линией заданного пути в начальной точке ортодромии. В частном случае, когда ортодромия совпадает с ме­ридианом или экватором, ортодромический путевой угол остается постоянным и равным в первом случае 0 или 180°, а во втором — 90° или 270°.
Полет по ортодромии с помощью магнитного компаса выпол­нить нельзя, так как в этом случае необходимо было бы изменять направление полета самолета от меридиана к меридиану, что осу­ществить практически невозможно. Поэтому такой полет выполня­ется с помощью специальных курсовых приборов — гирополукомпаса или курсовой системы.
На полетных картах, составленных в видоизмененной поликони­ческой проекции, ортодромия между двумя пунктами, расположен­ными на расстоянии до 1000—1200 км, прокладывается прямой ли­нией, а на больших расстояниях — кривой линией, обращенной выпуклостью к полюсу. В первом случае ОПУ и длина пути по ортодромии измеряется по карте. Во втором случае ортодромия наносится на карту по промежуточным точкам, а ОПУ и длина пу­ти по ортодромии рассчитываются по специальным формулам.
В качестве исходных данных для математического расчета ОПУ и длины ортодромии служат географические координаты ее исход­ного и конечного пунктов. Эти координаты определяются с точно­стью до минуты по соответствующим справочникам или снимаются непосредственно на полетной карте.
Длина пути по ортодромии между двумя точками рассчитыва­ется по формуле
cos Sорт = sinφ1 sinφ2 + cosφ1 cosφ2cos (λ2 — λ1),
где Sорт — длина пути по ортодромии в градусах дуги; φ1 и λ1— координаты исходной точки ортодромии; φ2 и λ2 — координа­ты конечной точки ортодромии.
Чтобы получить длину пути ортодромии в километрах, нужно полученный по формуле результат выразить в минутах дуги и ум­ножить на 1,852 км.
Ортодромический путевой угол (направление ортодромии в ис­ходной точке маршрута) рассчитывается по формуле
ctgα = cosφ1 tgφ2 cosec (λ2 — λ1)— sinφ, ctg(λ2 — λ1).
При большой протяженности ортодромия наносится на карту по промежуточным точкам.   Координаты φ и λ этих точек рассчи­тываются по формуле
tgφ1= Аsin(λ — λ1) + Вsin(λ2 — λ), tgφ2
 
Длина пути по ортодромии Длина пути по ортодромии
При этом обычно задаются долготой λ (через 10—20°) и опреде­ляют широту φ каждой промежуточной точки. Коэффициенты А и В для всех промежуточных точек остаются неизменными. Чтобы обеспечить высокую точность конечных результатов, расчет по ука­занным формулам ведется по пятизначным таблицам тригономет­рических функций. По вычисленным координатам наносят проме­жуточные точки на карте, а затем через эти точки проводят орто­дромию в виде плавной кривой линии (рис. 1.6) или в виде отрез­ков прямых, соединяющих вычисленные точки ортодромического пути.
 
Ортодромия и локсодромия
 
Математический расчет орто­дромии дает хорошую точность, но связан с громоздкими вычис­лениями. Поэтому иногда ортод­ромию наносят на полетную кар­ту при помощи навигационного глобуса или сетки, составлен­ной в центральной полярной про­екции, на которой ортодромия для любых расстояний изображается прямой линией. Используя это свойство сетки, можно произвести графический расчет ортодромии. Для этого на сетке соединяют начальную и конечную точки ортодромии прямой линией. На этой прямой намечают промежуточные точки. Затем по координатам переносят их на полетную карту и через полученные на по­летной карте точки проводят ортодромию.
Полет из одной точки в другую по магнитному компасу удобно выполнять с постоянным путевым углом, т. е. по локсодромии.
Локсодромией называется линия, пересекающая меридианы под одинаковыми путевыми углами. Путь самолета по локсо­дромии называется локсодромическим. Постоянный угол, под которым локсодромия пересекает меридианы, называется локсодромическим путевым углом.
На поверхности земного шара локсодромия имеет вид прост­ранственной логарифмической спирали, которая огибает земной шар бесконечное число раз и с каждым оборотом постепенно прибли­жается к полюсу, но никогда не достигает его (см. рис. 1.5). Путь по локсодромии всегда длиннее пути по ортодромии. Только в ча­стных случаях, когда полет происходит по меридиану или по эква­тору, длина пути по локсодромии и ортодромии будет одинаковой.
Если пункты перелета не очень удалены друг от друга, то раз­ность пути по ортодромии и локсодромии незначительна. Разность также мала и при больших расстояниях полета, если маршрут про­ходит под углом не более, 20° по отношению меридиана. При боль­ших расстояниях между пунктами перелета и особенно при на­правлении маршрута, близком к 90 или 270°, разность между рас­стояниями по ортодромии и локсодромии достигает больших зна­чений. При большой протяженности маршрута путь по ортодромии значительно сокращает расстояние, уменьшает продолжительность полета и расход Топлива, что повышает полезную нагрузку самоле­та. Поэтому полеты сверхзвуковых транспортных самолетов выпол­няются по спрямленным воздушным трассам, совпадающим с ор­тодромиями.
Локсодромия обладает следующими свойствами:
1)   пересекает меридианы под постоянным углом и на поверхно­сти земного шара своей выпуклостью обращена в сторону эква­тора;
2)  путь по локсодромии всегда длиннее пути по ортодромии, за исключением частных случаев, когда полет происходит по меридиа­ну или по экватору. Параллели являются частными случаями лок­содромии.
При полетах на большие расстояния разностью пути по орто­дромии и локсодромии пренебрегать нельзя. Поэтому маршрут дальнего полета, если его промежуточные точки не определены за­данием, должен прокладываться по ортодромии. В практике поле­тов по утвержденным воздушным линиям, Для которых установле­ны определенные правила, маршрут не является прямой от пункта вылета до пункта посадки, а имеет ряд изломов. Отрезки прямых выбирают с таким расчетом, чтобы разность в путевых углах в начале и конце участка не превышала 2°. При таком выборе длины участков ЛЗП прокладывается на полетной карте в виде прямой, которую принимают за локсодромию, если направление полета бу­дет выдерживаться по магнитному компасу, или за ортодромию, если направление полета будет выдерживаться с помощью специ­альных курсовых приборов. В этом случае локсодромический путь будет незначительно отклоняться от прямой линии, и для отрезков 200—250 км практически будет совпадать с ЛЗП, проложенной на карте.

Распечатать ..

 
Другие новости по теме:

  • Полеты по ортодромии - Необходимость полета по ортодромии
  • Расчет ИПС при полете по ортодромии
  • Навигационные элементы ортодромической линии пути
  • Зависимость между ортодромическим, истинным и магнитным курсами
  • Использование курсовых приборов самолета Ан-24


  • Rambler's Top100
    © 2009