www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посадку
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Запуск воздушных змеев
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых. В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по   всей   Польше   проводит ...

» Полет от наземного радиопеленгатора
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр ...

» Расчет ИПС при полете по ортодромии
При полете по ортодромии для прокладки радиопеленга на карте нужно рассчитать ИПС (рис. 23.11). Когда курс выдержи­вается относительно магнитного опорного меридиана, ИПС рас­считывается по следующей формуле: ИПС = ОМК + (± Δм.о.м) + КУР ± 180° — (± α), где σ = (λо.м — λр) sin φcp.

» Контроль пути по дальности с помощью боковых радиостанций
Контроль пути по дальности заключается в определении прой­денного от КО или оставшегося до заданного пункта расстояния. С помощью боковых радиостанций эта задача решается следую­щими способами: 1)   пеленгованием   боковой радиостанции и прокладкой ИПС на карте; 2)   выходом на предвычисленный КУР или МПР; 3)   выходом на траверз боковой радиостанции.

» Определение навигационных элементов с помощью РСБН-2
РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж мо­жет определить ветер, по которому в случае необходимости выпол­няются расчеты для обеспечения самолетовождения за преде­лами рабочей области системы.

» Модель ракеты «Родник»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают ...

» Путевые углы и способы их определения
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7). Заданным  магнитным путевым   углом   ЗМПУ   называется       угол,     заключенный между северным    направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и ...

» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА
Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1.  Произвести внешний осмотр  щитков управления   и   прибо­ров системы, установленных на самолете. 2.  Убедиться,   что горизонтальная   и    вертикальная    стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС   с помощью винтов с над­писью «К» и «Г» на КППМ д ...

» Теория ротора
Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом пот ...

» Девиация компаса и вариация
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к зап ...

» Режимы работы, органы управления, указатели КС-6 и их назначение
В зависимости от решаемых задач и условий полета курсовая система  может  работать: 1) в   режиме гирополукомпаса   «ГПК»; 2)   в   режиме   магнитной   коррекции   «МК»; 3)   в режиме астрономической коррекции «АК».

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Расчет элементов захода на посадку по малому прямоугольному маршруту в штиль
Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий междуна­родной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самоле­тов, имеющих приборную ско­рость пол ...

» Силы а моменты на роторе
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда ...

» Расчет времени и места начала снижения
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром. Рис. 5.6. Расчет времени набора высоты  

» Вертолет (геликоптер)
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несу­щим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без раз­бега, зависать в воздухе, ле­теть в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппа­рат ...

» Расчет истинной воздушной скорости по узкой стрелке КУС
Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высо­той в соответствии со стандартной атмосферой. Поэтому при тем­пературе на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скоро ...

» Назначение и устройство девиационного пеленгатора
Девиационный пеленгатор предназначен для определения маг­нитных пеленгов ориентиров, фактического МК самолета и уста­новки последнего на заданный МК. Устройство пеленгатора пока­зано на рис. 3. 15. Визирная рамка 3 состоит из глазного (с про­резью) и предметного (с нитью) диоптров. Она может вращаться вокруг вертикальной оси относительно азимутального лимба 1 или быть застопоренной. С помощью ин ...

» Модель вертолета «Бел­ка»
Модель вертолета «Бел­ка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние ло­пасти закрепляют на раме, служащей одновременно фю­зеляжем. Раму изготовляют из двух липовых пластин раз­мером 220 Х 10 Х 1 мм, верх­ней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две дру­гих посредст ...

» Категории и классы летающих моделей
Основным документом, ре­гламентирующим постройку авиационных летающих моде­лей, своеобразным сводом за­конов являются «Правила про­ведения соревнований по авиа­модельному спорту в СССР». В основе этих Правил — поло­жения кодекса ФАИ — техни­ческие требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены сле­дующие категории авиацион­ных моделе ...

» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Одноступенчатая модель ракеты
Одноступенчатая модель ракеты (рис. 58). Корпус клеят из двух слоев чертежной бу­маги на оправке диаметром 20 мм. Размер бумажной за­готовки 300X275 мм. Оправ­кой может служить круглый стержень из металла или дру­гого материала нужного диа­метра. Дав просохнуть бумаге, шов зачищают шлифовальной шкуркой и покрывают жидким нитролаком.

» Элементарные силы и элементарный крутящий момент лопасти
Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.

» Поляра автожира
Для выполнения аэродинамического расчета автожира необходимо вычислить поляру всего автожира. Почти все существующие автожиры помимо основной несущей поверхности - ротора - имеют еще небольшое неподвижное крыло, расположенное под ротором. Поэтому прежде всего в нашу задачу должно войти определение поляры комбинированной несущей поверхности, состоящей из ротора и крыла; очевидно, что, имея такую по ...

» Способы измерения высоты полета
Основными способами измерения высоты полета являются ба­рометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно из­меняющегося с высотой. Барометрический высотомер представля­ет собой обыкновенный барометр, у которого вместо шкалы дав­лений поставлена шкала высот. Такой высотомер определяет вы­соту полета самолета к ...

» Использование РПСН-2 в режиме «Скорость»
Режим «Скорость» предназначен для определения путевой ско­рости самолета. Она определяется по времени движения ориенти­ра между метками дальности на экране индикатора. В РПСН-2 в режиме «Скорость» автоматически включается масштаб развертки 50 км и регулируемая задержка запуска раз­вертки в диапазоне 60—150 км. Это позволяет выбирать ориенти­ры для определения путевой скорости на достаточно б ...

» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элеме ...

» Определение навигационных элементов на контрольном этапе
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно ...

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посадку
Самолетовождение » Полеты в особых условиях  |   Просмотров: 29120  
 
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

Кроки аэродрома (аэродром условный)

Рис. 22.1. Кроки аэродрома (аэродром условный)

При выполнении маневра снижения и захода на посадку в сложных метеоусловиях экипаж использует специальное бортовое оборудование самолета и наземные системы посадки. В настоящее время многие аэродромы гражданской авиации оборудованы сов­ременными системами посадки, а некоторые типы самолетов — си­стемами автоматического захода на посадку.
Полеты воздушных судов гражданской авиации в районе аэро­дрома выполняются по схемам, установленным для данного аэро­дрома. Они разрабатываются в соответствии с действующей «Ме­тодикой расчета и построения схем захода на посадку самолетов и вертолетов гражданской авиации», которая устанавливает единый подход к расчету и построению схем   захода   на   посадку   для   любых   аэродромов   и   различных  типов самолетов с учетом безопасности, экономичности   и   интенсивности полетов.
В гражданской авиации применяются следующие схемы сниже­ния и захода на посадку:
1)   с  прямой;
2)   по прямоугольному маршруту (малому и большому);
3)   отворотом   на   расчетный угол;
4)   стандартным   разворотом;
5)   с   обратного   направления.
Схемы снижения и захода на посадку сводятся по определен­ным направлениям и помещаются в «Сборник аэронавигационных данных аэродромов по воздушным трассам СССР».
 
Схема захода на посадку (в плане и в профиле)

Рис. 22.2. Схема захода на посадку (в плане и в профиле)
 
В   Сборнике   для   каждого   аэродрома   помещены:
кроки   аэродрома;
схемы снижения и захода на посадку в плане и в профиле;
схемы выхода из района аэродрома после взлета;
минимумы для взлета и посадки воздушных судов по ППП и ПВП для каждого типа воздушного судна, посадочного курса и системы посадки;
схемы воздушных зон крупных центров страны.
На кроки аэродрома (рис. 22.1) нанесены: привязка аэродрома к ближайшему крупному пункту с указанием направления и рас­стояния, взлетно-посадочные полосы с указанием типа покрытия и размеров их в метрах, номера ВПП, контрольная точка аэродрома (КТА) с указанием превышения ее над уровнем моря (превыше­ние КТА указывается вверху, в заглавии), превышение порогов (торцов ВПП) над уровнем моря, концевые и боковые полосы бе­зопасности и их размеры в метрах, рулежные дорожки (РД) и их номера, перрон, аэродромные и другие сооружения, местополо­жение радиотехнических и светотехнических средств посадки.
На схемы снижения и захода на посадку (рис. 22.2) в плане на­несены:
магнитные путевые углы на всех участках маневра;
время полета на отдельных участках для штилевых условий;
курсовые углы радиостанций от основных точек маневра, ази­муты и дальности от радиомаяка РСБН до основных точек манев­ра;
прямоугольные координаты основных точек маневра для при­менения автоматических систем захода на посадку;
высоты полета самолетов по давлению 760 мм рт. ст. и отно­сительно уровня аэродрома в основных точках маневра (высоты полета относительно уровня аэродрома указываются в скобках);
МПУ  подхода   к  точкам   вписывания в   схему;
высота аэродрома относительно уровня моря и безопасная высота полета в зоне взлета и посадки (МБВ);
высоты местности и высоты препятствий относительно КТА аэродрома (указываются в скобках);
места установки БПРМ, ДПРМ, радиомаяков РСБН и других средств обеспечения захода на посадку;
характерные  линейные   и  площадные ориентиры;
магнитное склонение;
ограничительные пеленги (МПС), рубежи ограничений и запре­щений.
Для схем захода приняты следующие обозначения выполнения маневров: маневр подхода в район вписывания в схему по прибо­рам на эшелоне нанесен сплошной линией, со снижением (по крат­чайшему пути) —двумя точками и тире, маневр внеочередного вы­хода на посадку из зоны ожидания—одной точкой и тире, маневр визуального захода на посадку — пунктирной линией.
На схеме в профиле  (см. рис. 22.2)   нанесены:
линии подхода, маневр снижения и захода на посадку с ука­занием времени полета на отдельных участках;
исходная высота начала маневра;
высота и эшелон перехода;
естественные и искусственные препятствия в секторе подхода с указанием их высоты относительно уровня аэродрома.
На схеме в профиле также указаны высоты подхода, входа в глиссаду, пролета приводных радиостанций и других контрольных точек схемы снижения и .захода на посадку, удаления ДПРМ и БПРМ от торца ВПП, их частота и позывные, угол наклона глис­сады (УНГ).
Необходимые для полета сборники выдаются экипажу на борт перед полетом. В каждом аэропорту, кроме рабочих, имеются конт­рольные сборники. В период предварительной и предполетной под­готовки к полету штурман самолета обязан проверить правиль­ность внесения изменений в рабочий сборник по контрольному сборнику. Без сверки полученного экипажем бортового экземпляра сборника с контрольным экземпляром выпускать экипаж в полет запрещается.
Заход на посадку с прямой является самым экономичным спо­собом и применяется для всех воздушных судов, когда рельеф местности и воздушная обстановка позволяют снижаться с марш­рута визуально (по ПВП) на высоту, равную высоте входа в глис­саду на расстоянии 25—30 км до ВПП (рис. 22.3).
При непрерывном радиолокационном контроле за движением воздушных судов в процессе снижения заход на посадку с прямой допускается также и при невидимости пролетаемой местности (по ППП).
 
Схемы снижения и захода на посадку

 
Заход на посадку с прямой применяется, когда направление подхода к аэродрому совпадает с направлением посадки или отли­чается от него в точке начала го­ризонтального полета на угол не более 45°.
В горной местности воздуш­ные суда выводятся на ДПРМ (БПРМ, ОПРС) на безопасном эшелоне с последующим их сни­жением по установленной схеме  захода на посадку.
Для захода на посадку с пря­мой командир воздушного судна по указанию диспетчера занимает исходную высоту начала сниже­ния на расстоянии 80—100 км до аэродрома посадки. Снижение с исходной высоты выполняется на скорости не более 460 км/ч по прибору и вертикальной скоростью 5—10 м/сек с расчетом подхода к аэродрому за 25—30 км на высоте горизонтального полета, рав­ной высоте входа в глиссаду (режим полета указан применитель­но к самолету Ан-24).
При достижении заданной высоты скорость полета постепенно уменьшается до 300 км/ч по прибору. Затем выпускаются шасси и закрылки и выполняется маневр выхода на предпосадочную пря­мую.
После входа в глиссаду самолет переводится в режим сниже­ния с расчетной вертикальной скоростью и скоростью планирова­ния 210—200 км/ч по прибору в зависимости от полетного веса. ДПРМ и БПРМ должны быть пройдены на высотах, указанных в схеме для данного аэродрома.
Заход на посадку по малому прямоугольному маршруту (рис. 22.4) применяется, когда в районе аэродрома посадки нет других воздушных судов, препятствующих подходу к аэродрому на сниже­нии, или когда невозможен заход на посадку с прямой.
Для захода на посадку по малому прямоугольному маршруту самолет подводится к аэродрому с посадочным курсом или близким к нему. После выхода на ДПРМ (БПРМ) на исходной высоте нача­ла маневра для захода на посадку выполняется разворот на 180° со снижением и самолет выводится на курс, обратный посадочному. Скорость по прибору выдерживается не более 460 км/ч, вертикаль­ная скорость снижения — 8—10 м/сек.
 
Схемы снижения и захода на посадку
 
В процессе разворота при достижении высоты полета по кругу скорость полета уменьшается до 300 км/ч по прибору. На траверзе ДПРМ выпускаются шасси, и полет продолжается к точке третьего разворота на скорости 280—300 км/ч в течение времени, установ­ленного согласно данной схеме. По истечении времени или при КУР = КУР3 выполняется третий разворот на скорости 280 км/ч по прибору с креном 15°. После третьего разворота самолет следует под прямым углом к предпосадочной прямой. По команде выпускаются закрылки на 15°, устанавливается скорость 250 км/ч по прибору и на этой ско­рости при КУР = КУР4 выполняется четвертый разворот на поса­дочный курс с креном 15°. До входа в глиссаду закрылки довыпускаются на угол 38°. После входа в глиссаду снижение выполняет­ся аналогично снижению при заходе на посадку с прямой.
В ряде случаев для захода на посадку по малому прямоуголь­ному маршруту самолет Ан-24 выводится на ДПРМ на установлен­ной высоте полета по кругу. Так как далее самолет должен следо­вать по прямоугольному маршруту на скорости около 300 км/ч, то после выхода на ДПРМ необходимо: выполнить первый разворот с креном 15°; после окончания первого разворота пройти в направ­лении, перпендикулярном направлению посадки, в течение расчет­ного времени t2; выполнить второй разворот на курс, обратный по­садочному; далее завершить полет по прямоугольному маршру­ту, как указано выше. В тех случаях, когда самолет выводится на аэродром с курсом, отличающимся от посадочного более чем на 45°, выполняется до­полнительный маневр для вписывания в схему малого прямоуголь­ного маршрута. Порядок выполнения дополнительного маневра указывается на схемах.
Заход на посадку по большому прямоугольному маршруту при­меняется, когда выход к аэродрому ограничен высотой подхода по условиям рельефа, интенсивностью воздушного движения и метео­условиями. Основой для построения этой схемы захода на посадку служит малый прямоугольный маршрут.
Началом маневра является ДПРМ, выход на который производится в нижнем воздушном пространстве на эшелонах, располо­женных выше исходной высоты для малого прямоугольного марш­рута (рис. 22.5). После выхода на ДПРМ самолет с посадочным курсом переводится в режим снижения с вертикальной скоростью 8—10 м/сек и скоростью по прибору не более 460 км/ч. Полет от ДПРМ продолжается в течение установленного времени до высоты начала разворота на 180°. По истечении указанного в схеме време­ни выполняется разворот на 180° с сохранением прежней скорости по прибору и вертикальной скорости снижения.
 
Схемы снижения и захода на посадку
 
После разворота на курс, обратный посадочному, продолжает­ся снижение с сохранением прежнего режима до высоты полета по кругу. По достижении этой высоты снижение прекращается и са­молет переводится в режим горизонтального полета с погашением скорости по прибору до 300 км/ч. От траверза ДПРМ заход выпол­няется аналогично заходу на посадку по малому прямоугольному маршруту.
Заход на посадку по большому прямоугольному маршруту можно выполнять и при выходе самолета к аэродрому с курсом, обратным посадочному, или под углом к ВПП. В этом случае ука­зывается вспомогательная точка, от которой выполняется маневр выхода на ДПРМ для входа в схему захода на посадку.
Заход на посадку отворотом на расчетный угол применяется, когда самолет подходит к аэродрому с курсом, обратным направ­лению посадки, или близким, к нему, а рельеф местности или дру­гие ограничения не позволяют выполнять снижение в направлении к траверзу ДПРМ.
Заход на посадку отворотом на РУ выполняется в такой после­довательности:
1.  Самолет выводится на ДПРМ на исходной высоте, указанной в схеме (рис. 22.6).
2.  В момент пролета ДПРМ выполняется отворот на расчетный угол. Курс после отворота и время полета до разворота на поса­дочный   курс   указываются   на  схеме   захода.
3.  По  истечении  заданного времени  полета выполняется  раз­ворот  на   посадочный   курс.
4.  Снижение самолета начинается с момента пролета ДПРМ и продолжается до выхода на высоту горизонтального полета, рав­ную высоте входа в глиссаду.
5.  После выхода на посадочный курс заход выполняется анало­гично   заходу   на  посадку   с прямой.
Заход на посадку стандартным разворотом (22.7) применяется, когда направление подхода к ДПРМ отличается от курса, обратного посадочному, на угол не более 45°, а рельеф местности и дру­гие ограничения    не позволяют выполнять заход на посадку    по другим схемам.
Заход на посадку стандарт­ным разворотом выполняется в следующем порядке:
1.  После   выхода     на  ДПРМ на исходной высоте, равной    высоте входа    в   глиссаду, берется курс, равный обратному посадочному. С этим курсом самолет сле­дует в горизонтальном полете в течение установленного времени, указанного в схеме.
2.  По истечении установленного времени выполняется указан­ный   в   схеме  стандартный   разворот.
3.  После выхода из разворота на посадочный курс полет выпол­няется горизонтально в течение 60 сек до точки входа    в глиссаду.
4.  После входа в глиссаду дальнейший заход выполняется ана­логично   заходу с прямой.
Заход на посадку с обратного направления (рис. 22.8) приме­няется на аэродромах, оборудованных радиотехническими средст­вами посадки только с одного (основного) направления, когда по воздушной или наземной обстановке выполнить посадку с этого направления невозможно. В этом случае снижение на высоту кру­га осуществляется по любой из установленных схем. Дальнейший заход на посадку выполняется визуально с обратного направления по прямоугольному маршруту или стандартным разворотом.
 
Схемы снижения и захода на посадку
Схемы снижения и захода на посадку
 
Обязанности командира и штурмана корабля при подходе к аэродрому посадки. Командир корабля при подходе к аэро­дрому посадки обязан:
1.  Доложить диспетчеру о входе в район аэродрома и о расчет­ном   времени  прибытия.
2.  Получить от диспетчера информацию о местонахождении са­молета (при необходимости), разрешение на снижение и заход на посадку по выбранной системе, МПУ посадки, атмосферное давле­ние на аэродроме, эшелон перехода, скорость и направление ветра у земли и на высоте круга, условия снижения,   информацию о ме­теорологической   обстановке.
3.  Руководить подготовкой и проверять готовность экипажа и самолета к заходу на посадку по карте контрольной проверки.
4.  Просмотреть схему снижения и захода на посадку, располо­жение и превышение препятствий, указанных в схеме.
5.  Уточнить курс посадки и минимум погоды.
6.  Проверить расчет элементов полета для захода на посадку, подготовленный   штурманом.
7. Дать указания членам экипажа  по выполнению полета в данных условиях.
8.  Включить   СП-50,   ра­диовысотомер   и установить  сигнализатор опасной высо­ты на высоту пролета БПРМ.
9.  Дать указание    штур­ману настроить радиокомпа­сы на ДПРМ и БПРМ аэро­дрома посадки.
10.  Следить  за   местопоположением    самолетов     в районе аэродрома,    прослу­шивая по радио информацию службы движения   и   доклады эки­пажей других   самолетов.
Штурман корабля при подходе к аэродрому посадки обя­зан:
1.  Проверить оборудование   согласно   карте контрольной про­верки.
2.  Просмотреть схему снижения и захода на посадку, располо­жение и превышение препятствий, указанных в схеме.
3.  Уточнить   курс   посадки  и  минимум   погоды.
4.  За 10 мин до посадки произвести полный расчет элементов снижения и захода на посадку с учетом влияния ветра.
5.  Передать весь расчет в письменной форме командиру корабля.
6.  Настроить радиокомпасы на приводные радиостанции систе­мы посадки данного аэродрома (первый — на ДПРМ, второй — на БПРМ), прослушать позывные и доложить командиру корабля о настройке.
7.  Контролировать полет и вносить коррективы с расчетом точ­ного вывода самолета в исходную точку начала маневра на задан­ной высоте и в установленное диспетчером время.
8.  Сообщить командиру корабля момент начала снижения него режим.
Основные данные, необходимые для расчета элементов захода на посадку. Для захода на посадку по установленной схеме и рас­чета элементов полета необходимо знать следующие исходные данные:
1.  Расположение радиотехнических средств (рис. 22.9):
а)  удаление БПРМ от начала ВПП    (стандартное — 1 000 м);
б)  удаление ДПРМ от начала ВПП    (стандартное — 4 000 м);
в)   угол    наклона      глиссады      планирования      (стандартный УНГ=2°40';
г)   расстояние от начала ВПП до траверза ГРМ на ось ВПП (стандартное  250   м);
д)   высоту входа в глиссаду (Нв.г);
е)   высоты пролета над ДПРМ   и    БПРМ (стандартные:    над ДПРМ — 200 м, над БПРМ — 60 м);   высоты пролета указаны в схеме  захода.
 
Схемы снижения и захода на посадку
 
2.  Режим полета при заходе на посадку.   На   самолете Ан-24 при выходе на аэродром на высоте круга и заходе   на посадку по малому прямоугольному маршру­ту берутся следующие истинные воздушные скорости:
а)   от ДПРМ    до    окончания второго    разворота Vи=300 км/ч (83 м/сек);
б)   от траверза ДПРМ до тре­тьего    разворота    Vи=290    км/ч (81 м/сек);
в)   третьего    разворота    Vи = 280 км/ч (78м/сек);
г)   от третьего  до  четвертого
разворота  Vи.ср= 260 км/ч (72 м/сек);
д)   четвертого разворота Vи= = 250 км/ч (69 м/сек);
е)   от конца четвертого разво­рота до точки входа в глиссаду Vи=250 км/ч;
ж)  после входа в глиссаду на планировании с закрылками, от­клоненными на 38°, Vпр=210—200 км/ч в зависимости от полетного веса (для расчетов истинная воздушная скорость планирования бе­рется   210 км/ч = 58  м/сек).
3.  Все развороты выполняются с креном  15°.
4.   Радиусы и время разворота на 90°.
Радиус разворота самолета рассчитывается по формуле
 
Схемы снижения и захода на посадку или с помощью НЛ-10М (рис. 22.10). Время разворота на 360° и на заданный угол разворота рассчитывается по формулам:
Схемы снижения и захода на посадкуСхемы снижения и захода на посадку
или с помощью НЛ-10М   (рис. 22.11).
Для самолета Ан-24 получаются следующие данные:
R1 = R2 = 2640 м; t90 = 50сек; R3 = 2300   м; t90= 47   сек;
R4 = 1830м; t90 = 42 сек.
 
Схемы снижения и захода на посадку

Распечатать ..

 
Другие новости по теме:

  • Заход на посадку по кратчайшему пути
  • Расчет элементов захода на посадку по малому прямоугольному маршруту в штил ...
  • Заход на посадку по радиолокационной системе РСП
  • Использование РСБН-2 для захода на посадку
  • Расчет времени начала снижения при заходе на посадку с прямой для самолета ...


  • Rambler's Top100
    © 2009