www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с ...

» Масштаб карты
Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местно­сти. Он показывает степень уменьшения линий на карте относи­тельно соответствующих им линий на местности. Масштаб бывает численный и линейный.

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...

» Способы определения путевой скорости в полете
Путевая скорость в полете может быть определена одним из следующих способов:1)   по  известному  ветру   (на НЛ-10М,  расчетчике,  ветрочете и в уме);2)   по  времени пролета известного   расстояния   (по отметкам места самолета);3) по времени пролета расстояния, определяемого с помощью самолетного  радиолокатора или радиотехнических систем;4)   по высоте полета и времени пробега визирной точкой и ...

» Режимы работы, органы управления, указатели КС-6 и их назначение
В зависимости от решаемых задач и условий полета курсовая система  может  работать: 1) в   режиме гирополукомпаса   «ГПК»; 2)   в   режиме   магнитной   коррекции   «МК»; 3)   в режиме астрономической коррекции «АК».

» Особенности самолетовождения в Арктике и Антарктике
Арктикой называется северная географическая зона зем­ного шара, расположенная за Северным полярным кругом (от се­верной широты 66°33') до Северного географического полюса. Антарктикой называется южнополярный бассейн, лежащий от южной широты 66°33' до Южного географического полюса. Антарктика — это обширная зона, примыкающая к Южному по­люсу и включающая в себя Антарктиду и южные части Тихо ...

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Модель планера «Малыш»
Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от преды­дущей «схематички» у этого планера крыло сделано объем­ным. Постройку модели лучше на­чать с фюзеляжа. Из фанеры или липовой пластины толщи­ной 4—5 мм выпиливают пи­лон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Умножение данного числа на тригонометрические функции углов
Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчи­тать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...

» Использование РПСН-2 в режимах «Обзор» и «Дальний обзор»
Эти режимы предназначены для обзора земной поверхности, пе­риодического определения места самолета, определения начала снижения с эшелона и для выполнения маневра захода на по­садку.

» Механизация крыла учеб­ной модели
Механизация крыла учеб­ной модели (рис. 68). Три палки — две струны... Так мо­делисты в шутку говорят об учебных моделях. Те и в са­мом деле, как правило, цельнодеревянные: и крыло, и фю­зеляж, и стабилизатор с ки­лем — из липовых пластин. Ко­нечно, такие аппараты просты. Это их достоинство. Но, к сожалению, их летные каче­ства оставляют желать лучше­го — высокая удельная нагруз­ ...

» Модель самолета из пено­пласта
Модель самолета из пено­пласта (рис. 28) разработана авиамоделистами СЮТ г. Элек­тростали. За основу взят чер­теж модели самолета «Вилга-2» и полумакет чехословацких мо­делистов, изготовленный из бальзы. Строительный материал для этого микросамоле­та — пенопласт (упаковочный или ПС-4-40).

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Использование РПСН-2 в режимах «Снос» и «Снос точно»
Режимы «Снос» и «Снос точно» предназначены для определе­ния угла сноса самолета. Первый используется при полетах до вы­соты 5000 м, а второй — при полетах на высотах от 5000 м и бо­лее. Измерение угла сноса основано на использовании эффекта Доп­лера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о ...

» Деление данного числа на тригонометрические функции углов
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов. Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение задан­ного угла α шкалы 3 (при делении числа на синус угла) или угл ...

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Резиномоторная модель са­молета класса В-1
Резиномоторная модель са­молета класса В-1 (рис. 31) может рассматриваться как шаг к спортивному совер­шенствованию в категории сво-боднолетающих моделей.

» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Вертолет (геликоптер)
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несу­щим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без раз­бега, зависать в воздухе, ле­теть в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппа­рат ...

» Пеленг и курсовой угол ориентира
Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного ме­ридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часо­вой стрелки от 0 до 360°.

» Запуск змеев
Как было ска­зано ранее, воздушные змеи запускают на тонком, прочном шнуре-леере. Особенно внима­тельно надо отнестись к выбо­ру места запуска. Необходимым условием  полета змея является ветер. Змеи различных размеров летают приопределенной скорости  ветра. Большой и тяжелый змей нав­ряд ли удастся запустить при слабом ветре, когда уверенно может   держаться   в   воздухе змей, изображенный на рис ...

» Расчет времени начала снижения при заходе на посадку с прямой для самолета Ан-24
При заходе на посадку с прямой штурман обязан рассчитать момент начала снижения и удаление ТНС от аэродрома посадки. Снижение с высоты эшелона до высоты горизонтального полета при достаточном запасе топлива и большом расстоянии до аэрод­рома рекомендуется выполнять на режиме скоростного снижения на наибольшей допустимой скорости 460 км/ч по прибору и верти­кальной скорости 5 м/сек. По достижении в ...

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Определение остаточной радиодевиации и составление графика радиодевиации
Остаточная радиодевиация определяется с целью обнаружения ошибок и неточностей, допущенных в процессе выявления и ком­пенсации радиодевиации. Для определения остаточной радиодевиации самолет последо­вательно устанавливается на 24 ОРК, на каждом ОРК определяет­ся КУР и вычисляется радиодевиация, которая записывается в протокол. Радиодевиация считается скомпенсированной, если на КУР = 0° она равна н ...

» Определение и устранение девиации гироиндукционного компаса ГИК-1
При устранении девиации гироиндукционного компаса ГИК-1 необходимо: 1. Установить регулировочные винты коррекционного механизма в их среднее положение. При выпуске компаса с завода регулировочные винты лекаль­ного устройства устанавливаются в среднее положение, при кото­ром коррекционный механизм обеспечивает устранение остаточной девиации в пределах ±6°. В процессе предыдущего устранения девиации ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Самолетовождение » Полеты в особых условиях  |   Просмотров: 26129  
 
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере.
Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элементы захода на посадку с учетом влияния ветра. Решение. 1. Определяем посадочный угол ветра по форму­ле
УВпос = δ—ПМПУ =60°—90° = —30°.
Если направление ветра мень­ше ПМПУ, это значит, что на посадочном курсе ветер дует в  левый борт, а если направление ветра больше   ПМПУ, — ветер дует в правый борт (рис. 22.14).

порядок расчета элементов захода на посадку

 
2.  Раскладываем вектор ветра на боковую и встречную составляющие: Uб = UsinУBпос=6  м/сек;  UB = Usin (90°—УBпос) = 10   м/сек. Эти данные  определяются по НЛ-10М (рис. 22.15).
 
порядок расчета элементов захода на посадку
 
3.  Определяем    углы    сноса    по участкам    прямоугольного маршрута.
Знаки углов сноса при встречно-боковом ветре на посадочном курсе определяются по следующему  правилу. Знак УСпос   противоположен    знаку УВпос.  УС3 имеет тот же знак, что УВпос. При правом круге УС2 положительный, а при левом — отрицательный. Знак УС4 противоположен знаку УС2
Формулы:
tg УСпос = Uб / Vпл;  tg УС2 = UB / V2,    tg УС3 = U 6/V3;    tg УС4 = UB/V4
решаются с   помощью  НЛ-10М   (рис.   22.16).   В  результате   решения   получим: УСпос = +6°; УС2 = +7°; УС3= — 4°; УС4= —8°.
4.   Рассчитываем магнитные курсы по участкам прямоугольного маршрута:
МКпос = ПМПУ — (± УСпос) = 90° — (+ 6°) = 84°; МК2 = ПМПУ ± 90° — (±УС2) = 90° + 90° — (+ 7°) = 173°; МК3 = ПМПУ ± 180° — (± УС3) = 90° + 180° — (— 4°) = 274°; МК4 = ПМПУ ± 90° — (± УС») = 90° —90° — (— 8°) = 8°.
5.   Определяем путевые скорости по участкам прямоугольного маршрута:
W 2 = V2 ± Uб = 83 + 6 = 89 м/сек;
W3 = V3 ± Uв = 81 + 10 = 91 м/сек;
Wгп= Vгп ± Uв = 69 — 10 = 59 м/сек;
Wпл= Упл ± Uв = 58 — 10 = 48, м/сек.
6.   Определяем время полета  по участкам  прямоугольного  маршрута:
а)  от ДПРМ до начала первого разворота
t1 = 10 сек + 2UB = 10 сек + 2·10 = 30 сек;
б)   от конца первого разворота до начала второго разворота:
 
порядок расчета элементов захода на посадку
tобщ2 = t шт2 + 2 t 90 = 20 + 2·50 = 120 сек.
При попутной боковой составляющей время упреждения вычитается, а при встречной прибавляется. Решал формулу для tупр на НЛ-10М (рис. 22.17), получаем: tупр =8 сек; t2 = 20—8=12 сек;
 
порядок расчета элементов захода на посадку
порядок расчета элементов захода на посадку

 
в) от траверза ДПРМ до начала третьего разворота:
t3 = t шт3 ± t упр
порядок расчета элементов захода на посадку ;
t обш 3 = t шт 3  +  t90 3 +  t90 4 = 72 + 47 + 42 = 161 сек.
В результате вычислений получаем:
t упр =18 сек; t3 =72—18 = 54 сек.
Для определения времени упреждения при полете от траверза ДПРМ на НЛ-10М необходимо t обш 3, взятое по шкале 2, подвести против W3, взятой по шкале 1. Затем против Uв, взятой по шкале 1, отсчитать t упр по шкале 2;
г) время горизонтального полета от момента окончания четвертого разворота до ТВГ:
t г.п=S г.п/W г.п=1950/59=33 сек.

7.   Определяем время и вертикальную скорость снижения. Для расчета вре­мени    и вертикальной    скорости снижения    на    НЛ-10М    необходимо    индекс «10»  шкалы  1 установить против     значения  Wпл, взятого  по  шкале 2.  Затем против S т.в.г, взятого по шкале 1, прочитать tсн по  шкале 2, а против значе­ния УНГ, взятого по  шкале 4,  прочитать Va    по    шкале 1.  Получаем: tсн = 3 мин; Vв = 2,2 м/сек.

8.  Определить курсовые углы радиостанции:
а)  курсовой угол траверза ДПРМ      
КУРтр = 90° (270°) + (± УC3) = 90° + (— 4°) = 86°;
б)   курсовой угол начала третьего разворота:
КУР3 = КУРшт + (± УС3) + (± ΔКУР3);
ΔКУР3=α3— α3'; tg α3'=L/S3'
S3'=W3t3

Величины S3' и α3' рассчитывают на НЛ- 10М. Для определения угла α3' на НЛ-10 необходимо треугольный индекс шкалы 4 уста­новить на S3' по шкале 5. Затем против L, взятой по шкале 5, отсчитать угол α3' по шкале 4. В результате получим: S3'=4910 м; α3' = 55°; ΔКУР3 = 50°—55° = —5°.
ΔКУР3 всегда имеет тот же знак, что и УС4.
КУР3 = 130° + (—4°) + (—5°) = 121°.
КУР3 можно определять также по формуле КУР3= 180°± α3' + (±УС3).
В этой формуле угол α3' берется со знаком плюс при левом круге и со знаком минус при правом;

в)   курсовой угол четвертого разворота:
КУР4 = КУРшт + (± УС4) + (± ΔКУР4);
tg ΔКУР4 = Soth/ S3+R3;  Soth = Uв t90 4
Величину Soth определяют на НЛ-10М или рассчитывают в уме. Для определения угла ΔКУР4 на НЛ-10М необходимо тре­угольный индекс шкалы 4 установить на S3+R3 по шкале 5, затем против Soth, взятого по шкале 5, отсчитать ΔКУР4 по шкале 4. В результате получаем;
S3+R3 = 5830 + 2300 = 8130 м;
Soth = 6·42 = 252 м;    ΔКУР4 = + 2°.
ΔКУР4 всегда имеет тот же знак, что и УСпос.
КУР4 = 77° + (—8°) + (+2°) = 71°;
г)   курсовой угол посадочный: КУРпос =360°+ (±УСпос) =360°+(+6°) =6°. Рассчитанные данные для  захода  на посадку  заносятся  в таблицу    и    на профильную схему в   штурманском   бортовом журнале,   а также    на    палетку установленного образца.

Упрощенный расчет элементов захода на посадку методом малого прямоугольного маршрута для самолета Ан-24. В основу упрощенного расчета положен принцип расчета элементов по сос­тавляющим ветра и установленным для самолета Ан-24 коэффи­циентам. Этими же коэффициентами можно пользоваться при уп­рощенном расчете элементов захода на посадку для самолета Як-40.
Рассмотрим порядок расчета элементов захода на посадку этим методом на примере.
Пример. ПМПУ = 90°; δ = 60°; U=12 м/сек; t2 = 20 сек; t3 = 72 сек; КУР3=130°; КУР4 = 77°; круг правый; tгп=S8 сек; tсн=147 сек; Vв.шт = 2,7 м/сек. Рассчитать элементы захода на посадку упрощенным спо­собом.
Решение. 1. Определяем посадочный угол ветра:
УВпос = δ — ПМПУ = 60° — 90° = — 30°.
2. Раскладываем вектор ветра с помощью НЛ-10М на боковую и встречную составляющие, Uб = 6 м/сек; UB — 10 м/сек.
Составляющие   ветра  можно  рассчитать в уме,   пользуясь   следующей    за­висимостью:

Таблица 2.2

 
УВпос (90—УВпос)      15°      30°      45°      50°      60°     70°    80°    90°      
Uб (UB)                       0,3U    0,5U    0,7U    0,8U    0,9U    0,9U    U    U     

3.   Определить углы   сноса по  участкам прямоугольного   маршрута:
УСпос = Uб = + 6°;
УС2 = 0,7 · UB = + 0,7 · 10 = + 7°;
УС3 = 0,7 · Uб = — 0,7 · 6 = — 4°;
УС4 = 0,8 · UB = — 0,8 · 10 = — 8°.
4.  Определяем магнитные курсы по участкам прямоугольного маршрута:
МКпос = ПМПУ — (± УСпос) = 90°— (+6°) = 84°;
МК2 = ПМПУ ± 90° —(± УС2) = 90° + 90° —(+ 7°) = 173°;
МК3 = ПМПУ ± 180° — (± УС3) = 90°+ 180° — (—4°) = 274°;
МК4 = ПМПУ ± 90° — (± УС4) = 90° — 90° — (— 8°) = 8°.
5.   Определяем   время  полета   по участкам   прямоугольного маршрута:
t1 = 10 сек + 2 Uв = 10 + 2·10 = 30 сек;
t2 = tшт ± 1,5 Uб =20 — 1,5·6 = 11 сек;
t3 = tшт ± 2Uв = 72 — 2·10 = 52 сек;
tгп=tшт± 0,5 Uв = 28 + 0,5·10 = 33 сек;
tсн = tшт ± 3 Uв = 147 + 3·10 = 177 сек.
6.  Определяем вертикальную скорость снижения:
Vв = Vв.шт — 0,05 Uв = 2,7 — 0,05·10 = 2,2 м/сек.
7.  Определяем курсовые углы:
КУРтр = 90° (270°) + (± УС3) = 90° + (— 4°) = 86°;
КУР3 = КУРшт + (±УС3) + (± УС4 /2) = 130° + (—4°) + (—8°/2) = 122°
КУР4 = КУРшт + (±УС4) + (± УСпос /2) = 77° + (—8°) + (+6°/2) = 72°
КУРпос = 360° + (± УСпос) = 360° + (+ 6°) = 6°.
Расчет высот полета над ДПРМ и БПРМ. При заходе на по­садку по приборам, если температура воздуха значительно отли­чается от стандартной, необходимо учитывать методическую температурную поправку высотомера. В холодное время года баро­метрический высотомер завышает показания высоты, что приво­дит при заходе на посадку по системе ОСП к раннему снижению самолета, а при выдерживании глиссады по системе СП-50 при­борная высота в момент прохода ДПРМ и БПРМ будет больше указанных в схеме для данного аэродрома.
Методическая температурная поправка рассчитывается в уме по правилу: каждые 3° отклонения фактической температуры воз­духа у земли от стандартной (+15°) вызывают изменение вы­соты на 1 %. Для получения приборной высоты найденную поп­равку при температуре ниже +15° прибавляют к высоте прохода РНТ, указанной в схеме, а при температуре выше +15° отнима­ют.
Методическую температурную поправку высотомера следует также учитывать при выдерживании высоты полета по кругу. Это обеспечивает вход самолета в глиссаду на расстоянии от ВПП, предусмотренном схемой захода.
Пример. Нд=200 м; Нб = 60 м; t0 = —45°. Определить приборные высоты пролета ДПРМ и БПРМ.
Решение. 1. Находим отклонение фактической температуры от стандарт­ной: Δt = —60°. Следовательно, величина методической температурной поправки будет составлять 20%, т. е. Δ Нд =40 м, Δ Нб = 12 м.

2. Определяем приборные высоты: Нд.пр=200+40=240 м; Нб. пр = 60+12 = 72 м.

Контроль за выполнением четвертого разворота при заходе на посадку по системе ОСП и СП-50. Точность выхода на пред­посадочную прямую во многом зависит от правильности выполне­ния четвертого разворота, поэтому его выполнение необходимо контролировать.
При заходе на посадку по системе ОСП контроль за правиль­ностью выполнения четвертого разворота ведется путем сопостав­ления показаний ГПК с КУР в двух точках, когда до окончания разворота остается 60 и 30°.
На самолете Ан-24 при правильном выполнении четвертого разворота, когда до выхода на посадочный курс по ГПК остается 60°, КУР должен быть равен 52° (308°) (рис. 22.18), а когда до выхода на посадочный курс остается 30°, КУР = 27° (333°).
Если в этих точках КУР больше или меньше расчетного, не­обходимо изменением крена исправить ошибку в выполнении раз­ворота по следующему правилу: если стрелка радиокомпаса под­ходит к нулю раньше, чем показания ГПК к курсу посадки, умень­шить крен, а если позже, увеличить крен.
При заходе на посадку по системе СП-50 выполнение четвер­того разворота контролируется следующим образом:
1. По КУР на ДПРМ, когда до окончания разворота остается 60°, т. е. так же, как и при заходе на посадку по системе ОСП.
2. По началу отшкаливания вертикальной стрелки КППМ (началу движения стрелки от края шкалы к центру).
При правильном развороте отшкаливание вертикальной стрел­ки начинается за 30—50° до выхода на посадочный курс в зави­симости от ширины курсового сектора и схемы захода на данном аэродроме.
С момента отшкаливания изменением крена совмещают стрел­ку курса с вертикальной стрелкой и удерживают их в таком по­ложении до прихода вертикальной стрелки к центру шкалы, т. е. до выхода на посадочный курс. Так поступают в штилевых усло­виях и при боковой составляющей ветра до 3 м/сек. Если боковая составляющая ветра более 3 м/сек, рекомендуется в про­цессе разворота стрелку курса КППМ удерживать с наветренной стороны от вертикальной стрелки.
 
порядок расчета элементов захода на посадку
 
Выход на предпосадочную прямую и обеспечение безопасно­сти захода на посадку. Для выво­да самолета на предпосадочную прямую при заходе на посадку по системе ОСП необходимо:
1.  Выполнить  четвертый  раз­ворот до КУР=0°и заметить МК.
2.  Определить Положение  са­молета относительно предпосадочной прямой
путем сравнения МК с ПМПУ: если МК:==ПМПУ, самолет находится на предпосадочной прямой; если МК>ПМПУ, самолет левее, а если МК<ПМПУ, правее этой прямой.
3.  При наличии разницы между МК и ПМПУ взять курс для выхода  на предпосадочную  прямую.  При разнице между МК и ПМПУ более 10° угол выхода равен 15—20°, а при разнице менее 10° угол выхода не более 10°.
4.  Определить момент выхода  на  предпосадочную прямую по КУРвых.
5.  Выйдя на предпосадочную прямую, установить самолет на
МКпос = ПМПУ — (±УСпос).
Выход на предпосадочную прямую при заходе на посадку по системе СП-50 выполняется по вертикальной стрелке КППМ, ко­торая указывает положение предпосадочной прямой относитель­но самолета.
Если после выполнения четвертого разворота вертикальная стрелка находится не в центре шкалы прибора, то самолет не­обходимо довернуть в ту сторону, куда отклонена стрелка. Если стрелка отклонилась до упора, курс увеличивают на 15—20°, при небольших отклонениях стрелки — не более чем на 10°. По мере приближения вертикальной стрелки к центру шкалы самолет плав­но устанавливают на .посадочный курс с учетом угла сноса.
Для обеспечения безопасности захода на посадку командир корабля обязан:
1. С наибольшей точностью выводить самолет в зону курса и глиссады до высоты принятия решения.
Высота принятия решения — это такая высота, на которой должен быть начат маневр ухода самолета на второй круг, если до этой высоты не установлен надежный визуальный контакт с огнями светооборудования аэродрома или другими ориентирами по курсу посадки, позволяющий выполнить безопас­ную посадку, или если положение самолета в пространстве отно­сительно ВПП не обеспечивает успешной посадки.
Высота принятия решения равна установленному минимуму погоды аэродрома по высоте нижней границы облаков (верти­кальной видимости). Достижение высоты принятия решения опре­деляет экипаж по показаниям барометрического высотомера.
2. Прекратить снижение и уйти на второй круг, если:
а)   до высоты принятия решения экипаж не установил надеж­ного визуального контакта    с    земными    ориентирами     (огнями приближения или подхода);
б)   к моменту достижения высоты принятия решения самолет не вышел  на  установленную  глиссаду снижения  по высоте или курсу полета и безопасная посадка не обеспечивается;
в)  положение самолета в пространстве относительно ВПП    не обеспечивает безопасной посадки;
г)   в воздушном пространстве или на ВПП появились препят­ствия, угрожающие посадке;
д) имеются метеорологические явления, представляющие угро­зу для безопасной посадки.

Заход на посадку по системе ОСП методом малого прямоуголь­ного маршрута выполняется в следующем порядке:
1.  После получения от диспетчера условий захода на посадку и разрешения на пробивание облаков на высоте эшелона перехода установить на барометрических высотомерах давление аэродрома и включить   радиовысотомер.
2.  Вывести самолет на ДПРМ с МК = ПМПУ и приступить к вы­полнению захода на посадку по установленной схеме в соответ­ствии с   рассчитанными данными.
3.  Вести контроль за полетом по схеме и при необходимости вносить поправки в курс.
4.  В процессе выполнения четвертого разворота вести контроль за правильностью его выполнения и при необходимости изменять крен для точного выхода на предпосадочную прямую.
5.  По истечении расчетного времени горизонтального    полета перевести самолет в режим снижения  с заданной вертикальной скоростью.
6.  При неточном выходе на предпосадочную прямую исправить обнаруженное   уклонение.
7.  Проход ДПРМ и БПРМ выполнить на высотах, указанных в схеме  захода.
8.  После выхода на визуальный полет, но не позже достижения высоты принятия решения продолжать заход на посадку или уйти на второй круг.

Заход на посадку по системе СП-50 методом малого прямо­угольного маршрута выполняется в следующем порядке:
1.  При подходе к аэродрому включить питание радиоприемни­ков СП-50 и установить на щитке управления канал работы систе­мы, соответствующий данному аэродрому.
2.  Вывести самолет на аэродром посадки, используя для этого имеющиеся на аэродроме радиотехнические средства.
3.  После выхода на ДПРМ приступить к выполнению захода на  посадку  по  установленной схеме.
4.  Заблаговременно, до подхода к точке четвертого разворота, необходимо:
а)   убедиться в исправной работе курсового и глиссадного при­емников по отшкаливанию стрелок и по закрытию   бленкеров на КППМ;
б)   проверить электрическую балансировку указателя курсово­го приемника. Для этого необходимо нажать ручку «Баланс»  и, если стрелка при этом не установится в центре черного   кружка шкалы, то не отпуская ручку, повернуть ее в ту или иную сторону до совмещения стрелки с центром шкалы. При открытых бленкерах вращать   ручку баланса   запрещается.
5.  Определить момент начала четвертого разворота по радио­компасу по расчетному КУР или начать разворот по команде дис­петчера.
6.  В процессе четвертого разворота осуществлять контроль за правильностью его выполнения.
7.  После окончания четвертого разворота вывести самолет    в зоны курса и глиссады. Вначале полет выполняется без снижения. Стрелка глиссады при этом медленно смещается сверху к центру шкалы. При ее приближении к кружку шкалы довыпустить за­крылки на угол 38°, после чего перевести самолет   на снижение, плавно увеличивая вертикальную скорость до расчетного значения.
8.  Заключительный этап захода на посадку (не позже дости­жения высоты принятия решения) продолжать визуально с исполь­зованием светотехнических средств или уйти на второй круг.
Обязанности командира и штурмана корабля при заходе на посадку по системам СП-50 и ОСП. Для успешного и безопасного захода на посадку каждый член экипажа обязан четко выполнять возложенные на него обязанности, а также осуществлять взаимо­контроль с тем, чтобы любые упущения своевременно были заме­чены и устранены.
Командир корабля при заходе на посадку обязан:
1.  Доложить диспетчеру, по какой системе будет выполняться заход на   посадку.
2.  На высоте эшелона перехода установить на левом высотоме­ре давление аэродрома посадки и дать указание второму пилоту установить это давление на правом высотомере. В целях взаимо­контроля командир и второй    пилот    поочередно    докладывают: «Давление такое-то установлено».  Сравнить показания    высото­меров .и доложить диспетчеру об установке на высотомерах   дав­ления аэродрома посадки.
3.  Установить ПМПУ   на   КППМ.
4.  Строго выдерживать расчетные данные захода на посадку, полученные  от   штурмана.
5.  Давать команды о выпуске шасси и закрылков и получать доклады об их исполнении. Проконтролировать выпуск шасси.
6.  В процессе четвертого разворота учитывать поправки, давае­мые  штурманом.
7.  Если безопасная посадка не обеспечивается, уйти на второй круг.
8.  Докладывать диспетчеру о начале маневра захода, выполне­нии разворотов, проходе траверза ДПРМ, выходе на предпосадоч­ную прямую и входе в глиссаду.   До пролета   ДПРМ доложить: «Шасси выпущены, к посадке готов» и получить разрешение на посадку.
Штурман корабля при заходе на посадку обязан:
1.  Следить за правильностью установки давления на высотоме­рах и за работой приводных радиостанций путем прослушивания позывных. В случае неустойчивых показаний радиокомпасов доло­жить об этом командиру корабля и вести счисление пути, исполь­зуя данные наземного радиолокатора  (радиопеленгатора).
2.  Сообщать командиру корабля о начале разворотов, курсы, время и КУР для полета по установленной схеме захода.
3.  Осуществлять    контроль за выдерживанием схемы захо­да на посадку и при необходи­мости   вносить   поправки для предотвращения      отклонения самолета от установленной схе­мы.
4.  Прослушивать    команд­ную радиосвязь и сопоставлять сообщения с земли со своими данными.
5.  На траверзе ДПРМ подать команду о включении се­кундомера, доложить о проходе траверза и сообщить время полета до третьего разворота и КУР в точке его начала. При пролете траверза ДПРМ напомнить командиру корабля о  выпуске   шасси.
6.  При выполнении четвертого разворота корректировать выход на   предпосадочную   прямую.
7.  При выходе на предпосадочную прямую выключить передат­чик   радиолокатора.
8.  На предпосадочной  прямой непрерывно следить за  выдер­живанием расчетного курса, высоты, скорости полета и вертикаль­ной скорости снижения и предупреждать командира   корабля   об отклонениях приборной скорости и высоты    полета    до пролета БПРМ.
Следить за работой СП-50 и в случае   отказа   или неисправ­ности немедленно докладывать экипажу: «Глиссада не работает».
9.  Докладывать командиру корабля: о достижении высоты про­лета ДПРМ; пролете ДПРМ; подходе   к   высоте минимума для .посадки («Высота минимума»); об условиях видимости   земли   и ВПП при выходе на визуальный полет (например, «Огни подхода вижу хорошо»; «Полоса справа или слева» и т. д.); высоту по ра­диовысотомеру, начиная с высоты 70 м и до приземления. Такой доклад высоты дает возможность своевременно определить момент опасного   приближения  самолета  к   земле.
 
10. При уходе на второй круг следить за выдерживанием курса, безопасной высоты и правильностью выполнения маневра набора высоты, докладывать командиру корабля о замеченных от­клонениях.

Определение фактической ширины   прямоугольного маршрута.
При заходе на посадку фактическая ширина прямоугольного марш­рута контролируется в момент прохода траверза ДПРМ по разности α между курсовыми углами ДПРМ и БПРМ (рис. 22.19).
 
порядок расчета элементов захода на посадку
 
При правильном полете по стандартной схеме на самолете Ан-24 на траверзе ДПРМ угол α должен быть 23°. Если α >23°, этo значит, что самолет находится ближе к оси ВПП и наоборот. Если угол α отличается от расчетного (23°) на 1°, то это соответствует отклонению в величине Lф на 300 м.
Для любой схемы захода фактическая ширина прямоугольного маршрута Lф = ΔSpcт/tg α ф,.
Для определения Lф, на НЛ-10М необходимо угол α ф, взятый по шкале 4, подвести против расстояния между ДПРМ. и БРПМ, взятое по шкале 5, и против треугольного индекса шкалы 4 отсчи­тать фактическую ширину прямоугольного маршрута по шкале 5.
При большом отклонении фактической ширины прямоугольного маршрута от установленной вносится поправка в курс. Ее можно определить по НЛ-10М, но обычно полагают, что 100 м уклонения самолета на траверзе ДПРМ соответствует поправке в курс на 1°.

Распечатать ..

 
Другие новости по теме:

  • Расчет элементов захода на посадку по малому прямоугольному маршруту в штил ...
  • Сокращенные обозначения и условные знаки, принятые в самолетовождении
  • Заход на посадку по кратчайшему пути
  • Использование РСБН-2 для захода на посадку
  • Расчет показания широкой стрелки КУС для заданной истинной скорости


  • Rambler's Top100
    © 2009