www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Режимы работы, органы управления, указатели КС-6 и их назначение
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
return_links(); ?>
return_block_links(); ?>
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Использование НИ-50БМ при обходе гроз
При обходе гроз на маршруте полета НИ-50БМ может исполь­зоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).

» Масштаб карты
Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местно­сти. Он показывает степень уменьшения линий на карте относи­тельно соответствующих им линий на местности. Масштаб бывает численный и линейный.

» Назначение и устройство девиационного пеленгатора
Девиационный пеленгатор предназначен для определения маг­нитных пеленгов ориентиров, фактического МК самолета и уста­новки последнего на заданный МК. Устройство пеленгатора пока­зано на рис. 3. 15. Визирная рамка 3 состоит из глазного (с про­резью) и предметного (с нитью) диоптров. Она может вращаться вокруг вертикальной оси относительно азимутального лимба 1 или быть застопоренной. С помощью ин ...

» Ракета— летательный аппа­рат тяжелее воздуха
Ракета— летательный аппа­рат тяжелее воздуха, подъем­ная сила которого возникает по принципу реактивного дви­жения. Этот принцип заклю­чается в отталкивании ра­кеты от массы струи газов, образованных при сгорании топлива и истекающих из двигателя. Своим рождением первые ракеты обязаны изобретению пороха. Но в те далекие вре­мена ракеты служили лишь для фейерверков. Потом они нашли применение ...

» Умножение данного числа на тригонометрические функции углов
Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчи­тать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...

» Особенности самолетовождения на малых высотах
Условия самолетовождения на малых высотах. Полетами на малых высотах называются полеты, выполняемые на высотах до 600 м над рельефом местности. Такие полеты могут быть пред­намеренными (при выполнении различных видов работ авиацией специального применения), учебными (согласно программам лет­ной подготовки) и вынужденными (по различным причинам).

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, ре ...
Навигационная система «Трасса» предназначена для непре­рывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямо­угольной системе координат (дальность и линейное боковое ук­лонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является изме­ритель путевой скорости и угла сноса, исп ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Модель ракеты «Родник»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают ...

» Модель вертолета чешских авиамоделистов
Модель вертолета чешских авиамоделистов (рис. 53) на­поминает настоящий гели­коптер. Фюзеляж заодно с килем вырезают из пластины пено­пласта толщиной 5 мм и по периметру фигуры окантовы­вают липовыми рейками сече­нием 5X1 мм. В качестве силовой балки используют сос­новую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшип­ник винта, а с другого при­вязывают крючок из прово­ ...

» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Определение летающих моделей
Модель планера — модель летательного аппарата, не обес­печенная собственной силой тяги, у которой подъемная си­ла образуется аэродинамиче­скими силами, действующими на неподвижно закрепленные поверхности. Запускают при помощи леера не длиннее 50 м. Технические требо­вания: площадь несущей по­верхности — 32—34 дм2, мини­мальная масса — 410 г, макси­мальная удельная грузоподъ ...

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» Ортодромия и локсодромия
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных  линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. ...

» Установка самолета на заданный магнитный курс
Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как Δк = МК - КК. Самолет устанавливается на заданный МК: 1)   пеленгованием продольной оси самолета; 2)   по магнитному пеленгу ориентира.

» Назначение и принцип устройства навигационной линейки НЛ-10М
Навигационная линейка НЛ-10М является счетным инструмен­том пилота и штурмана и предназначена для выполнения необхо­димых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...

» Учет влияния ветра на полет самолета - Ветер навигационный и метеорологический
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты. С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На ...

» Видоизмененная поликоническая (международная) проекция
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1 : 1 000 000. Строится она по особому закону, принятому международным соглашением.

» Точность посадки
Цель этих соревнований — посадить модель в заранее обозначенное место. На расстоянии 5—6 м от стартовой линии размечают «аэродром». Это может быть круг диаметром около 1 м или лист газеты. Каждый участник после тренировочных запусков совершает зачетный полет Если после первого тура у нескольких участников модели приземлились точно на «аэродром», для определения победителя линию старта ...

» Сущность кодовых выражений ЩГЕ и ЩТФ
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

» Первые воздушные змеи
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю. Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминаю ...

» Заход на посадку по кратчайшему пути
Заход на посадку по кратчайшему пути предусматривает под­ход к заданным точкам прямоугольного маршрута. В основу пост­роения такого захода принят прямоугольный маршрут. Однако выполняется он не полностью, а от траверза ДПРМ или от одного из разворотов. Снижение с маршрута и заход на посадку выполняются при тех же условиях и с теми же ограничениями, что и заход с прямой.

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Подготовка данных для применения КС-6
Для применения КС-6 в полете в различных режимах работы нужно предварительно на земле подготовить необходимые дан­ные. Для использования КС в режиме «ГПК» при подготовке к по­лету необходимо произвести дополнительную разметку маршрута для полета по ортодромии. В этом случае, кроме обычной проклад­ки и разметки маршрута, необходимо:

» Модель планера «Малыш»
Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от преды­дущей «схематички» у этого планера крыло сделано объем­ным. Постройку модели лучше на­чать с фюзеляжа. Из фанеры или липовой пластины толщи­ной 4—5 мм выпиливают пи­лон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Расчет времени и места встречи самолетов, летящих на встречных курсах
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время   сближения самолетов tсбл= S'/ W1 + W2

» Устранение установочной ошибки рамки радиокомпаса
Блок рамки устанавливается на самолет так, чтобы направле­ние курсовой черты, отмеченное рисками на основании рамки, сов­пало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет рав­на нулю. Установочной ошибкой рамки радиокомпаса на­зывается угол, на который отклоняется стрелка указателя от нуле­вого деления шкалы при КУР = 0°. Э ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Режимы работы, органы управления, указатели КС-6 и их назначение
Самолетовождение » Полеты в особых условиях  |   Просмотров: 13347  
 
В зависимости от решаемых задач и условий полета курсовая система  может  работать: 1) в   режиме гирополукомпаса   «ГПК»;
2)   в   режиме   магнитной   коррекции   «МК»;
3)   в режиме астрономической коррекции «АК».
Режим «ГПК» является основным. В этом режиме кур­совая система работает как гирополукомпас и выдает ортодромический курс, т. е. курс, измеряемый относительно опорно­го меридиана, на котором была произведена установка заданно­го курса. В режиме «ГПК» магнитный датчик с коррекционным механизмом отключаются от гироагрегата, работающего в режиме «ГПК». Его сигналы поступают на указатель УШ и к потребителям сигнала курса (рис. 23.7).
Система работает таким образом, что при работе основного гироагрегата в режиме «ГПК» запасный работает в режиме «МК», а при работе основного в режиме «МК» запасный работает в режиме «ГПК». Переключение гироагрегатов осуществляется пере­ключателем «Основной — Запасный». Показания гироагрегата, ра­ботающего в режиме «МК» всегда выдаются на стрелку «Г» указа­теля УГА-1У.

 
гирополукомпас
В режиме «МК» курсовая система вы­дает МК относитель­но пролетаемого мери­диана. В этом режиме МК, определяемый ин­дукционным датчиком, передается через кор-рекционный механизм на один из гироагрегатов, который осредняет и стабилизирует его и передает на ука­затель УШ и стрелку «Г» контрольного ука­зателя УГА-1У. Вто­рой гироагрегат нахо­дится в резерве и ра­ботает в режиме «ГПК». Но показания от него в этом случае  на указатели не пере­даются.
Режим «МК» используется не только для самолетовождения по локсодромическим МПУ, но и для начальной установки курсовой системы по определенному опорному меридиану.
В режиме «АК» курсовая система в зависимости от установ­ленных данных на вычислителе ДАК-ДВ-5 выдает ИК относитель­но пролетаемого меридиана или ОИК относительно опорного мери­диана. В этом режиме астрономический курс подается на один из гироагрегатов, где осредняется и стабилизируется и затем пе­редается на указатель УШ и на потребители курса. Второй гиро­агрегат работает в режиме «МК» и обеспечивает выдачу на стрелку «Г» указателя УГА-1У осредненного гиромагнитного курса.
Таким образом, стрелка «Г» указателя УГА-1У постоянно пока­зывает осредненный гиромагнитный курс, а стрелка «А» этого указателя во всех режимах работы показывает неосредненный астрономический курс. Это позволяет установить необходимость корректировки показаний гироагрегата, работающего в режиме «ГПК».
Из рассмотренных режимов работы видно, что в курсовой си­стеме КС-6 курсовой гироскоп может использоваться автономно, совместно с магнитным или астрономическим датчиком курса. При совместной работе датчик курса непрерывно корректирует показа­ния, выдаваемые курсовым гироскопом.
Для работы с курсовой системой имеется    пульт   управления ПУ-1    (рис.   23.8).   На   нем   расположены:
а)  переключатель   режимов  работы;
б)   ручка задатчика  курса,  которой  устанавливают заданный курс на указателе УШ в режиме «ГПК»;
в)   переключатель широтной коррекции для Северного и Южно­го   полушарий;
г)   ручка   и   шкала   для   установки  широты  места;
д)   переключатель гироагрегатов, которым подключают указа­тель УШ к основному или запасному гироагрегату;
е)   два регулировочных потенциометра для компенсации ухода гироскопа  в   азимуте от несбалансированности;
ж)   кнопка быстрого согласования показаний указателей с по­казаниями   индукционного   датчика.
При использовании курсовой системы необходимо учитывать, что наличие блока связи курсовой системы с автопилотом требует соблюдения мер предосторожности при выполнении некоторых пе­реключений на пульте управления курсовой системы.
При работе переключателем «Осн. —Зап.» в автопилот подает­ся сигнал для отключения стабилизации с целью исключения боль­ших рассогласований между сельсином-датчиком гироагрегата курсовой системы и сельсином-приемником автопилота. Такой же сигнал подается в автопилот при работе кнопкой согласования или задатчиком курса. Сигнал подается до тех пор, пока нажата кнопка согласования или отклонен задатчик курса. Такое устройство в полете с включенным автопилотом при рассогласовании между ос­новным и запасным гироагрегатами и переключении потребителей курса с основного гироагрегата на запасный; а также с режима «МК» на «ГПК» и с «АК» на «ГПК» позволяет избежать ухода са­молета с курса.
 
Пульт управления и указатели КС-6

Рис. 23.8 Пульт управления и указатели КС-6:
I — пульт  управления;   2 — указатель  штурмана;  3 — указатель  УГА-1У;
4 — указатель УК-1

При переключении режимов работы с «ГПК» на «МК» или с «ГПК» на «АК» при рассогласовании между гироагрегатами само­лет может уйти с курса. Чтобы предотвратить такой уход, указан­ные переключения необходимо производить при нажатой кнопке быстрого согласования на пульте управления курсовой системы.
Курсовая система КС-6 имеет следующие указатели (см. рис. 23,8):
1.  Указатель   штурмана УШ — комбинированный указа­тель, предназначенный для отсчетов курса самолета, курсовых уг­лов и пеленгов   двух радиостанций, а также пеленгов   самолета.
В зависимости от режима работы курсовой системы на указа­теле по внутренней подвижной шкале против треугольного индек­са отсчитываются магнитный, ортодромичёский или истинный курс самолета. По этой же шкале против острых концов стрелок радио­компаса отсчитывают пеленги радиостанций, а против противопо­ложных концов стрелок — пеленги самолета. Курсовые углы радио­станций отсчитываются по неподвижной внешней шкале указате­ля против острых концов стрелок.
Указатель УШ позволяет в случае необходимости определить истинный курс при нерабочем состоянии астрокомпаса, т. е. в ре­жиме магнитной коррекции. Для этого предусмотрен учет магнит­ного склонения района полета, которое устанавливается по шкале склонений УШ в пределах ±50° или по шкале склонений коррекционного механизма в пределах ±180°. Если в режиме «МК» магнит­ное склонение установить по шкале УШ, а на КМ-4 магнитное скло­нение оставить на нуле, то на УШ будет измеряться ИК, а стрелка «Г» указателя УГА-1У укажет МК. Если магнитное склонение ус­тановить на КМ-4, а на указателе УШ оставить на нуле, то УШ и стрелка «Г» указателя УГА-1У укажут ИК.
Это необходимо знать для правильного пользования указателя­ми курсовой системы.
2.  Указатель гиромагнитного    и   астрономичес­кого   курса   УГА-1У — вспомогательный   указатель штурмана. Стрелка «Г» этого указателя в любом режиме работы курсовой системы покажет гиромагнитный курс при условии, что на коррекционном механизме магнитное склонение установлено 0°. На стрел­ку «А» всегда поступает автономно ИК или ОИК в зависимости от того, какие данные установлены   на вычислителе    астрокомпаса. Штурман, имея одновременно показания ортодромического, маг­нитного и астрономического курса, может определить величину ухо­да оси гироскопа и установить необходимость корректировки гироагрегата,   работающего   в   режиме  «ГПК».
3.  Два   указателя курсаУК-1 (или КППМ) устанавли­ваются на приборной доске пилотов. Они подключены к указателю УШ   и  повторяют  его  показания.
В зависимости от типа самолета в комплект КС-6, кроме при­веденных указателей, могут дополнительно входить другие указа­тели.

Распечатать ..

 
Другие новости по теме:

  • Курсовая система КС-6, ее назначение и комплект
  • Предполетная проверка КС-6
  • Использование КС-6 в полете
  • Подготовка данных для применения КС-6
  • Органы управления, указатели системы «Трасса» и их назначение


  • Rambler's Top100
    © 2009
    Warning: Unknown: open(/var/lib/php/session/sess_2j28vlc5ub2sbg6q0d98m6gtf6, O_RDWR) failed: Permission denied (13) in Unknown on line 0 Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0