www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высотно-скоростных самолетов
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Полет на радиостанцию
Полет на радиостанцию может быть выполнен пассивным или активным способом. В свою очередь активный полет на радиостанцию может быть выполнен одним из следующих способов; 1)   с выходом на ЛЗП; 2)   с выходом в КПМ (ППМ); 3)   с любого направления подбором курса следования. Пеленги, определяемые при полете на  радиостанцию,  можно использовать для контроля пути по направлению.

» Основные правила самолетовождения - Порядок выполнения маршрутного полета
Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установлен­ным маршрутам. В основе успешного выполнения полетов лежит строгое соблю­дение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1)   сохранять ориентировку в течение вс ...

» Кордовая модель воздушного боя А. Сырятова
Модель воздушного боя, Разработанная А. Сырятовым (рис. 40), наглядное подтверж­дение тому, что пенопласт с Успехом может заменить такой традиционный материал, как бальза.Несмотря на внешнюю про­стоту — прямоугольное в пла-не крыло, вынесенный на ко­роткой балке руль высоты, модели ижевского спортсмена присущи хорошие пилотажные Качества.   Построить  ее  сможет почти каждый авиамоде­лист &m ...

» Особенности самолетовождения в условиях грозовой деятельности
Условия   самолетовождения    в   зоне  грозовой    деятельности. Грозы являются опасными явлениями погоды для авиации. Опас­ность полетов в условиях грозовой деятельности связана с силь­ной турбулентностью воздуха и возможностью попадания мол­нии в самолет, что может вызвать его повреждение, поражение экипажа и вывод из строя оборудования. Наиболее опасными являются фронтальные грозы, которые ох­ ...

» Планирование и вертикальный спуск автожира
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

» Элементарные силы и элементарный крутящий момент лопасти
Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.

» Ортодромия и локсодромия
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных  линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. ...

» Карты, применяемые в авиации - Назначение карт
В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1)   прокладки и изучения маршрута полёта; 2)   измерения путевых углов и   расстояний    между   пунктами маршрута; 3)   определения географических координат пунктов; 4)   нанесения точек расположения радиотехнических    средств, обеспечивающих полет; 5)   получения ...

» Магнитные поля, действующие на картушку компаса, установленного на самолете
На картушку магнитного компаса, установленного на самолете, действуют следующие поля: 1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану); 2)  постоянное магнитное поле самолета; 3)   переменное магнитное поле самолета; 4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

» Направления на земной поверхности
В самолетовождении принято направления на земной поверх­ности измерять в градусах относительно северного направления ме­ридиана. Направления могут указываться азимутом (истинным пе­ленгом) и путевым углом. Азимутом, или истинным пеленгом, ориентира назы­вается угол, заключенный между северным направлением мериди­ана, проходящего через данную точку, и направлением на наблю­даемый ориентир (рис. 1.4 ...

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратн ...
Такая операция осуществляется по формулам: V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6. Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2. Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индек ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Прямоугольный коробчатый змей Л. Харграва
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью. Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной ...

» Выполнение радиодевиационных работ
Радиодевиационные работы проводятся штурманом с целью определения, компенсации радиодевиации и составления графика остаточной радиодевиации в следующих случаях: 1)  при установке на самолет, нового радиокомпаса или отдель­ных его блоков; 2)   после выполнения регламентных работ, при которых заме­нялись отдельные блоки радиокомпаса; 3)  при обнаружении в полете ошибок в показаниях указателя курсовы ...

» Основные сведения о НИ-50БМ
В комплект навигационного индикатора входят следующие ос­новные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кро­ме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автомат ...

» Вывод корд из крыла
Оплетка для троса (рис. 64). Много хлопот доставляет не­опытным моделистам-кордови-кам проблема вывода тросов управления из крыла. Слу­чайный их перегиб — и заеда­ние в системе управления поч­ти всегда грозит аварией для летательного аппарата. Один из самых просты и эффективных способов, поз­воляющих избежать, подобных неприятностей,— использова­ние спиральных пружин, вклеенных в закон ...

» Подготовка к выполнению и выполнение девиационных работ
При подготовке к выполнению девиационных работ необходимо: 1)   проверить состояние девиационного пеленгатора и исправ­ность его магнитной системы; 2)   выбрать площадку для девиационных работ, удаленную не менее чем на 150—200 м от стоянок самолетов, строений и линий высоковольтных передач; площадка должна быть ровной и иметь хороший обзор; 3)  измерить из центра площадки при помощи    деви ...

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Расчет элементов захода на посадку по малому прямоугольному маршруту в штиль
Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий междуна­родной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самоле­тов, имеющих приборную ско­рость пол ...

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Определение путевой скорости самолета
При полете самолета от радиолокатора и на радиолокатор пу­тевая скорость определяется в следующем порядке: 1.  Запросить у диспетчера место самолета и заметить время. 2.  Через 7—10 мин полета снова запросить место самолета и заметить время. 3.  Определить пройденный самолетом путь как разность между полученными дальностями:   Sпр =Д2—Д1 или Sпр=Д1—Д2 4.  По пройденному расстояни ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Особенности самолетовождения в ночных условиях
Условия самолетовождения ночью. Ночным называется по­лет, выполняемый в период от захода до восхода Солнца. Самоле­товождение ночью характеризуется: 1. Ограниченными возможностями ведения визуальной ориентировки вследствие плохой видимости неосвещенных ориентиров, Которая зависит от высоты полета (табл; 21.3).

» Штурманский контроль готовности экипажа к полету
Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсут­ствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету кон­тролируют штурманы авиаэскадрилий (авиаотрядов) и руководи­тель полетов. Флаг-штурман летного учебного заведения ...

» Силы а моменты на роторе
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высотно-скоростных самолетов
Самолетовождение » Полеты в особых условиях  |   Просмотров: 10037  
 
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:
1. Трудность ведения визуальной ориентировки вследствие ухудшения видимости ориентиров мелких и средних размеров и невозможности их детального распознавания. При дымке ведение визуальной ориентировки еще больше затрудняется. Кроме того, полет на большой высоте проходит в большинстве случаев за обла­ками, что вообще исключает ведение визуальной ориентировки.
В ясную погоду при отсутствии дымки ведение визуальной ориентировки с больших высот облегчается большой дальностью видимости крупных ориентиров, контуры которых хорошо про­сматриваются до дальностей, равных десятикратной высоте. Зимой в ясную погоду с высоты 10000 м дальность видимости крупных городов достигает 100— 120км, а летом — 70—80 км. Но при незначительном ухудшении условий видимости контуры крупных ориен­тиров различаются на удалении, равном семи высотам полета, а характерные отличительные признаки этих ориентиров распозна­ются в зоне с радиусом, равным только двум высотам полета.
Вследствие того что ведение визуальной ориентировки на боль­шой высоте затруднено, экипаж должен уметь осуществлять само­летовождение с помощью технических средств. Эта особенность вы­зывает необходимость оснащения высотных самолетов более совер­шенным навигационным оборудованием, а летный состав застав­ляет знать это оборудование и уметь грамотно его применять.
2.  Снижение точности визуального определения места самоле­та. Если при полете на средних высотах незначительные угловые ошибки при глазомерном определении    вертикали    не вызывают больших отклонений в определении места самолета, то эти же угловые ошибки, допущенные в полете на больших высотах, влекут за собой большие линейные отклонения и снижают точность опреде­ления места самолета. Неточность отметок   места    самолета на карте приводит к ошибкам в расчете путевой скорости и снижает точность определения угла сноса и фактического путевого угла.
Ввиду трудности самолетовождения на больших высотах; эки­пажу предусмотрена помощь службой движения, которая ведет радиолокационный контроль за полетом самолетов и по требова­нию экипажа сообщает фактические координаты МС, обеспечивает необходимой информацией о воздушной обстановке и метеорологи­ческих условиях полета.
Для достижения достаточной точности самолетовождения необ­ходимо, чтобы экипаж использовал в комплексе все технические средства.
3.  Увеличение влияния ветра. На больших высотах   скорость ветра составляет в среднем 100 км/ч, а максимальное значение ветра может достигать 300 км/ч.   Нередко в зоне струйных течений скорость ветра превышает 600—800 км/ч.   Вследствие этого Даже при больших скоростях полета угол сноса может достигать 10°—15° и неучет ветра может привести к значительным уклонениям от ЛЗП.
 Большая скорость ветра вызывает значительное расхождение путевой скорости с воздушной, и поэтому точное счисление пути возможно лишь при знании путевой скорости самолета. Эта осо­бенность самолетовождения также приводит к необходимости обя­зательного  учета   ветра.
4.  Увеличение дальности   действия   радиотехнических средств. При полетах на больших высотах увеличивается дальность дейст­вия наземных радиолокационных станций, средств связи и радио­технических систем самолетовождения. Поэтому имеется более ши­рокая возможность использования их для контроля пути и сохра­нения  ориентировки.
Однако надо учитывать, что при полете на больших скоростях, особенно при полетах в облаках и осадках, возникают сильные электростатические помехи, уменьшающие точность пеленгования радиостанций с помощью радиокомпаса. В облаках и осадках даль­ность действия радиокомпаса по приводным радиостанциям может сократиться до 30—50 км. Подстройку и перестройку радиокомпа­са необходимо производить до входа самолета в облачность.
На больших высотах возрастают ошибки в определении момен­та пролета радиостанции с помощью радиокомпаса. Величина за­паздывания момента пролета радиостанции может достигать рас­стояния, равного одной — трем высотам полета. Наибольшая точность пеленгации радиостанций с помощью радиокомпаса полу­чается на расстоянии до радиостанции не ближе трехкратной высо­ты полета и не далее прямой геометрической видимости.
5.  Большие ошибки в определении высоты барометрическим высотомером. С увеличением высоты полета возрастают не только инструментальные ошибки барометрических высотомеров. Большие погрешности в показании высоты на скоростных самолетах возни­кают также вследствие того, что к высотомеру трудно подвести фактическое атмосферное давление. Давление воздуха, поступаю­щего в высотомер, несколько отличается от фактического давления, что приводит к появлению так называемых аэродинамических оши­бок.
Значительные суммарные ошибки в определении высоты по ба­рометрическим высотомерам вызывают необходимость эшелони­ровать полеты на больших высотах через больший безопасный ин­тервал по сравнению с безопасным интервалом, установленным для средних высот.
6.  Уменьшение часового расхода топлива по мере увеличения высоты при полете на одном и том же режиме. Часовой расход топ­лива на самолетах с ГТД при полете на одном и том же режиме зависит от высоты полета. Чем меньше высота полета, тем больше часовой расход топлива. В связи с этим дальность полета самолета с ГТД на больших высотах значительно больше, чем при полетах на средних и особенно малых высотах. Поэтому определение наи­выгоднейшей высоты полета и места начала снижения на самоле­тах с ГТД приобретает особо важное значение.
7.  Выполнение полета на больших высотах связано с большими истинными воздушными скоростями. Вследствие уменьшения плот­ности воздуха с подъемом на высоту при постоянной скорости по прибору истинная скорость будет увеличиваться. Если на высоте полета 2000 м истинная скорость отличается от приборной на 10%, то на высоте 8000 м это отличие достигает 50%.
При полетах на скоростях более 300 км/ч в показаниях указате­ля скорости возникает ошибка за счет сжимаемости воздуха. Эта ошибка в зависимости от скорости и высоты полета может дости­гать больших значений и должна учитываться при расчете скорости полета. Все это требует обязательного расчета для целей самоле­товождения истинной воздушной скорости.
Полеты на больших скоростях усложняют работу всего экипажа и особенно  штурмана.  Сама  обстановка  полета  требует  быстрых  действий  при навигационных расчетах и установке данных на аппаратуре. Все это требует от штурмана лучшей подготовки и четкости в работе.
8. Необходимость   учета    по­правки в показания   термометра наружного воздуха. На самолетах с ГТД для измерения темпе­ратуры наружного воздуха уста­навливается термометр ТНВ-15. Вследствие нагревания его чув­ствительного элемента в затор­моженном потоке показания термометра становятся завышенны­ми. Поэтому для определения фактической температуры наружного воздуха необходимо в пока­зания термометра вводить поправки, которые определяются по шкале, составленной специально для термометра ТНВ-15 (см. рис. 6.2). Для пользования шкалой поправок истинную воздушную скорость полета отсчитывают по узкой стрелке КУС.
9.  Увеличение радиуса и времени разворота. Большие скорости полета значительно увеличивают радиус и время разворота. Обыч­но эти величины рассчитывают на НЛ-10М, как это показано в гл. 22. Однако некоторые расчеты, например, времени разворота на 360°, можно произвести в уме. Для этого следует помнить, что вре­мя разворота t360, измеренное в секундах, численно равно при кре­не 10° истинной   скорости   Vи км/ч, при крене 20° — примерно   1/2 Vи км/ч и при крене 15° — 2/3Vи км/ч.
Пример. Vи = 600 км/ч. Определить продолжительность разворота на 360° при кренах самолета 10, 20 и 15°.
Решение. Применяя указанное выше правило, находим:
при крене 10° t360 ≈ 600 сек = 10 мин;
при крене 20° t360 ≈ 600/2 = 300 сек = 5 мин;
при крене 15° t360 ≈ 600 — 600/3 = 400 сек = 6 мин 40 сек.
10.  Необходимость учета радиуса разворота при выходе на но­вое направление, что достигается началом разворота с упрежде­нием (рис. 24.1).
 
Величина линейного упреждения разворота
 
Величина линейного упреждения разворота
ЛУР = R tgУР/2
Для расчета ЛУР на НЛ-10М необходимо треугольный индекс шкалы 4 установить на величину радиуса разворота, взятого по шкале 5. Затем против половинного значения угла разворота, взятого по шкале 4, прочитать по шкале 5 величину ЛУР.
Выход в точку начала разворота определяют визуально, с по­мощью радиотехнических средств или по времени.
Пример. Vи=600 км/ч; крен 15°; УР=116°; W = 510 км/ч; Тприб на ППМ 14.20. Определить элементы разворота, время его начала и окончания.
Решение. 1. Определяем на НЛ-10М значения R, ЛУР и время пролета ЛУР: R=10600 м; ЛУР=17000м; tЛУР —2 мин.
2.  Рассчитываем время начала разворота:
Тнач.разв = Тприб— tЛУР = 14.20 — 0.02 = 14.18.
3.  Определяем  на НЛ-10М время  разворота   на   360° и на  заданный   угол разворота: t360 = 6 мин 35 сек; tур = 2 мин 07 сек.
4.  Рассчитываем время окончания разворота:
Ток.разв = Тнач.разв+ tур = 14.18 + 02,07 = 14.20,07.
11. Полеты высотно-скоростных самолетов осуществляются в основном с ортодромическими путевыми углами (курсами). Ортодромическая система счисления пути имеет некоторые особенности в подготовке к полету и в его выполнении. Она требует определен­ной теоретической и практической подготовки пилотов и штурма­нов.

Распечатать ..

 
Другие новости по теме:

  • Ошибки указателя воздушной скорости
  • Условия ведения визуальной ориентировки
  • Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и зада ...
  • Расчет истинной и приборной воздушной скорости в уме
  • Шкалы навигационной линейки и их назначение


  • Rambler's Top100
    © 2009