Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_343.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337 Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338 Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339 Магнитные поля, действующие на картушку компаса, установленного на самолете » Летательные аппараты - Авиационный моделизм и самолетовождение
www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет » Магнитные поля, действующие на картушку компаса, установленного на самолете
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
return_links(); ?>
return_block_links(); ?>
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Шкалы навигационной линейки и их назначение
Навигационная линейка имеет не равномерные шкалы, а лога­рифмические. При решении задач с помощью НЛ-10М использует­ся одновременно две, а иногда и больше шкал, которые называют­ся смежными.

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Списывание девиации на самолетах с ГТД
На самолетах с ГТД датчики дистанционных компасов установ­лены в местах, где, как показали результаты исследований, дейст­вие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА из­дал специальное указание, согласно которому:

» Основные правила самолетовождения - Порядок выполнения маршрутного полета
Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установлен­ным маршрутам. В основе успешного выполнения полетов лежит строгое соблю­дение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1)   сохранять ориентировку в течение вс ...

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

» Вывод корд из крыла
Оплетка для троса (рис. 64). Много хлопот доставляет не­опытным моделистам-кордови-кам проблема вывода тросов управления из крыла. Слу­чайный их перегиб — и заеда­ние в системе управления поч­ти всегда грозит аварией для летательного аппарата. Один из самых просты и эффективных способов, поз­воляющих избежать, подобных неприятностей,— использова­ние спиральных пружин, вклеенных в закон ...

» Заход на посадку по кратчайшему пути
Заход на посадку по кратчайшему пути предусматривает под­ход к заданным точкам прямоугольного маршрута. В основу пост­роения такого захода принят прямоугольный маршрут. Однако выполняется он не полностью, а от траверза ДПРМ или от одного из разворотов. Снижение с маршрута и заход на посадку выполняются при тех же условиях и с теми же ограничениями, что и заход с прямой.

» Организация авиамодельного кружка
Кру­жок — одна из форм работы по техническому творчеству. Он объединяет школьников, интересующихся определенной областью техники. Цель заня­тий любого технического круж­ка — приобщение ребят к тру­ду, развитие их творческих способностей, формирование умений и навыков. Авиамодельный кружок объе­диняет ребят, увлеченных авиа­цией. Для многих из них авиамоделизм, это увлека­тельное и серь ...

» Определение остаточной радиодевиации и составление графика радиодевиации
Остаточная радиодевиация определяется с целью обнаружения ошибок и неточностей, допущенных в процессе выявления и ком­пенсации радиодевиации. Для определения остаточной радиодевиации самолет последо­вательно устанавливается на 24 ОРК, на каждом ОРК определяет­ся КУР и вычисляется радиодевиация, которая записывается в протокол. Радиодевиация считается скомпенсированной, если на КУР = 0° она равна н ...

» Предотвращение случаев попаданий самолетов в районы с опасными для полетов метеоявлениями
Для предотвращения случаев попадания в районы с опас­ными для полетов метеоявлениями необходимо: 1)   перед полетом тщательно изучить метеообстановку по трас­се и прилегающим к ней районам; 2)   наметить порядок обхода опасных условий погоды; 3)   наблюдать в полете за изменением    погоды,   особенно   за развитием явлений, опасных для полетов; 4)   периодически получать по радио сведения о сос ...

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Модель воздушного боя «Юниор»
Кордовая модель воздуш­ного боя «Юниор» (рис. 38) разработана под двигатель с рабочим объемом 1,5 см3. Вы­полнена она по схеме «летаю­щее крыло». Основной сило­вой элемент модели — кром­ка-лонжерон. Его выполняют следующим образом: из липы или сосны выстругивают рей­ку сечением 20x3 мм и дли­ной 750 мм, к боковым сто­ронам которой приклеивают еще три рейки сечением 10х 3 мм: с передней &mdas ...

» Путевые углы и способы их определения
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7). Заданным  магнитным путевым   углом   ЗМПУ   называется       угол,     заключенный между северным    направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и ...

» Контроль пути по направлению и дальности
Контроль пути по направлению и дальности может осуществляться с помощью боковых радиолокаторов путем нанесения на карту места самолета по переданным на борт самолета азимуту и дальности. Такой контроль можно осуществить и без прокладки А и Д на карте, что сокращает время на получение необходимых данных контроля пути.

» Движение лопастей
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Модель ракеты «Пионер»
Модель ракеты «Пионер» (рис. 59) снаряжается двига­телем МРД 10-8-4. Технология ее изготовления немного отли­чается от предыдущей. Корпус клеят из плотной бумаги в два слоя   на   оправке  диаметром 55 мм. Четыре стабилизатора вырезают из пластины пено­пласта ПС-4-40 толщиной 5 мм, профилируют и оклеивают пис­чей бумагой. После высыха­ния их обрабатывают шлифо­вальной шкуркой и клеем ПВА крепят вс ...

» Предварительная штурманская подготовка к полету
Четкость работы экипажа в воздухе во многом зависит от качества штурманской подготовки к полету, которая проводится с целью облегчения самолетовождения и обеспечения безопасно­сти и точности выполнения полета по заданному маршруту, пре­дотвращения потери ориентировки и прибытия в пункт назначения в заданное время.

» Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и задачи, решаемые с его помощь ...
Одной из важнейших задач, выполняемых экипажем самоле­та в полете, является сохранение ориентировки. Ее решение до­стигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях ви­зуальную ориентировку не всегда можно применить, а определе­ние места самолета с помощью радиотехнич ...

» Использование РПСН-2 в режимах «Снос» и «Снос точно»
Режимы «Снос» и «Снос точно» предназначены для определе­ния угла сноса самолета. Первый используется при полетах до вы­соты 5000 м, а второй — при полетах на высотах от 5000 м и бо­лее. Измерение угла сноса основано на использовании эффекта Доп­лера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о ...

» Азимутальные проекции
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проек ...

» Автожир представляет собой летательную машину тяжелее воздуха
Автожир представляет собой летательную машину тяжелее воздуха, С точки зрения конструкции автожир можно назвать самолетом с вращаю­щейся несущей поверхностью, так как последней является авторотирующий (свободно вращающийся) винт-ротор большого диаметра и малого геометриче­ского шага, расположенный над фюзеляжем так, что ось его нормальна (или близка к нормали) оси фюзеляжа. Авторотирует винт-ротор ...

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Карты, применяемые в авиации - Назначение карт
В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1)   прокладки и изучения маршрута полёта; 2)   измерения путевых углов и   расстояний    между   пунктами маршрута; 3)   определения географических координат пунктов; 4)   нанесения точек расположения радиотехнических    средств, обеспечивающих полет; 5)   получения ...

» Сравнение ротора автожира и крыла самолета
На фиг. 70 даны характеристика ротора, имеющего параметры А = 3, δ = 0,006, γ = 10, Θ = 2˚, k=1,0 и характеристика монопланного крыла, имеющего размах, равный диаметру ротора, и относительное удлинение λ = 6. Крыло имеет тот же профиль что и лопасть ротора автожира (Геттинген429),причем коэффициент подъемной силы крыла в целях сравнения отнесен к площади круга отметае ...

» Использование РПСН-2 в режиме «Скорость»
Режим «Скорость» предназначен для определения путевой ско­рости самолета. Она определяется по времени движения ориенти­ра между метками дальности на экране индикатора. В РПСН-2 в режиме «Скорость» автоматически включается масштаб развертки 50 км и регулируемая задержка запуска раз­вертки в диапазоне 60—150 км. Это позволяет выбирать ориенти­ры для определения путевой скорости на достаточно б ...

» Деление данного числа на тригонометрические функции углов
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов. Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение задан­ного угла α шкалы 3 (при делении числа на синус угла) или угл ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Магнитные поля, действующие на картушку компаса, установленного на самолете
Самолетовождение » Навигационные элементы полета и их расчет  |   Просмотров: 13958  
 
На картушку магнитного компаса, установленного на самолете, действуют следующие поля:
1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану);
2)  постоянное магнитное поле самолета;
3)   переменное магнитное поле самолета;
4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.
Постоянное магнитное поле самолета создается твердым само­летным железом. Твердое железо — это такие ферромагнит­ные массы самолета, которые длительно сохраняют магнитные свойства, т. е. обладают большой коэрцитивной силой. Твердое железо рассматривают в магнитном отношении как постоянный магнит. Постоянное магнитное поле самолета сохраняет величину и направление относительно продольной оси самолета на любом курсе и вызывает полукруговую девиацию.
Переменное магнитное поле самолета создается мягким само­летным железом. Мягкое железо — это такие ферромагнит­ные массы самолета, которые имеют неустойчивую намагничен­ность, т. е. обладают малой коэрцитивной силой. Они легко перемагничиваются при перемене курса самолета. Переменное магнитное поле самолета меняет свою величину и направление от­носительно продольной оси в зависимости от курса самолета и вы­зывает четвертную девиацию.
Электромагнитное поле, создаваемое работающим элек­тро- и радиооборудованием самолета, по характеру действия ана­логично магнитному полю твердого железа. Поэтому девиация, вы­зываемая электромагнитным полем, обычно рассматривается сов­местно с девиацией, вызываемой твердым железом.
Рассмотрим полукруговую и четвертную девиацию и их харак­теристики.
Полукруговая девиация и ее характеристика. Девиация назы­вается полукруговой потому, что она 2 раза (через полукруг) приходит к нулю и 2 раза меняет свой знак при повороте самолета на 360°.
Для удобства рассмотрения суммарное действие постоянного магнитного поля самолета можно заменить эквивалентным дейст­вием бруска твердого железа. Предположим, что брусок твердого железа расположен по продольной оси самолета. Обозначим бук­вой Н горизонтальную составляющую магнитного поля Земли, а буквой F вектор напряженности магнитного поля бруска твердого железа. Так как вектор F направлен по продольной оси самолета, то на МК=0° его действие будет совпадать с действием вектора R (рис. 3. 9) и F не вызывает отклонения картушки компаса от пло­скости магнитного меридиана. Поэтому на МК=0° девиация рав­на нулю.Из рисунка видно, что при изменении курса самолета направле­ние результирующего вектора R изменяется. На МК=90° вектор F
 
Полукруговая девиация

Рис. 3.9. Полукруговая девиация:
а —действие магнитного  поля  твердого железа; б —график  полукруговой   де­виации

направлен под прямым углом к вектору H и создает максималь­ную положительную девиацию. При дальнейшем повороте само­лета девиация начнет уменьшаться и на курсе 180° снова станет равной нулю. Затем после курса 180° вектор F начнет вызывать отрицательную девиацию, которая достигнет максимальной вели­чины на МК=270°.
Полукруговая девиация имеет следующие особенности:
а)   при повороте самолета на 360° она дважды достигает мак­симального значения и 2 раза становится равной нулю;
б)  на противоположных курсах полукруговая   девиация   равна по величине, но противоположна по знаку;
в)   полукруговая девиация составляет большую часть девиации компаса и ее можно полностью компенсировать с помощью посто­янных магнитов девиационного прибора.
В общем случае брусок твердого железа может и не совпадать по направлению с продольной осью самолета, что не меняет харак­тера полукруговой девиации, но смещает ее график по отношению курсов самолета на угол, равный углу между продольной осью са­молета и направлением оси бруска. Полукруговая девиация при любом положении бруска твердого железа будет дважды равнять­ся нулю при повороте самолета на 360°.
Четвертная девиация и ее характеристика. Девиация называется четвертной потому, что она при повороте самолета на 360° 4 раза (через четверть круга) становится равной нулю и 4 раза ме­няет свой знак.
Мягкое железо приобретает свойства магнита при воздействии на него магнитного поля Земли и, как уже отмечалось, имеет не­устойчивую намагниченность. Брусок  мягкого  железа,  расположенный  определенным
 
Четвертная девиация

Рис. 3.10. Четвертная девиация: а — действие магнитного поля мягкого железа; б — график четвертной девиации

образом по отношению к магнитному полю Земли, намагничивается не по направлению магнитных силовых линий, а по длине бруска. Намагниченность бруска
B= μHсоsα,
где В — магнитная индукция; μ — магнитная проницаемость бруска; α — угол между направлением вектора напряженности поля и направлением бруска.
Следовательно, максимальное намагничивание бруска мягкого железа происходит в том случае, когда брусок расположен по на­правлению силовых линий поля. Когда брусок расположен перпен­дикулярно к магнитным силовым линиям, то намагниченность его равна нулю. Поэтому при перемене курса самолета мягкое железо перемагничивается и создает переменное поле самолета, которое меняет свою величину и направление относительно продольной оси самолета.
Для удобства объяснения влияния мягкого железа на магнит­ный компас расположим вблизи компаса брусок мягкого железа вдоль продольной оси самолета. Обозначим вектор напряженно­сти поля бруска мягкого железа буквой F (рис. 3.10).
На МК = 0° векторы F и H совпадут по направлению. Хотя намагниченность бруска мягкого железа в этом случае будет мак­симальной, она не вызовет отклонения картушки компаса от пло­скости магнитного меридиана и девиация останется равной нулю.
При повороте самолета брусок мягкого железа отклоняется от на­правления силовых линий магнитно­го поля Земли и намагниченность бруска уменьшается. На МК=45° дей­ствие магнитного поля мягкого желе­за вызовет максимальное значение положительной девиации. На МК=90° мягкое железо потеряет свойства маг­нита, так как брусок расположится перпендикулярно к силовым линиям магнитного поля Земли и девиация снова станет равной нулю. При даль­нейшем повороте самолета брусок мяг­кого железа перемагнитится и вызовет отрицательную девиацию, которая на МК=135° достигнет максимального  значения. Из рисунка видно, что на МК, равных 180 и 270°, девиация вновь достигнет нуля, а на МК, равных 225 и 315°, будет    макси­мальной.
Четвертная девиация имеет следующие свойства:
а)   при повороте самолета на 360° она 4 раза достигает макси­мума и 4 раза становится равной нулю;
б)   на противоположных курсах четвертная девиация равна по величине и по знаку;
в)   четвертная девиация  составляет  меньшую   часть девиации компаса.
Характер изменения этой девиации не позволяет устранять ее с помощью постоянных магнитов. Она списывается и заносится в график. В современных компасах (ГИК-1) четвертная девиация компенсируется с помощью механического компенсатора.

 
Постоянная девиация
Как правило, переменное магнитное поле самолета нельзя, за исключением редких случаев, привести к действию одного бруска мягкого железа. Расположение деталей из мягкого железа на са­молете обычно таково, что своим действием они вызывают, кроме четвертной, постоянную девиацию.
Постоянная девиация вызывается мягким самолетным железом, расположенным вокруг компаса и намагниченным магнитным по­лем Земли (рис. 3.11). Железные детали, расположенные вокруг компаса, могут создать такое суммарное магнитное поле, которое не будет изменять своей величины и положения в пространстве при изменении курса самолета, т. е. массы мягкого железа могут образовать магнитное поле с устойчивой полярностью.
Обозначим вектор напряженности магнитного поля, вызванного мягким железом, расположенным по окружности, буквой F. Если разложить этот вектор на составляющую ΔH, направленную по магнитному меридиану, и составляющую ΔF, направленную           перпендикулярно           к меридиану, то можно заметить, что составляющая ΔF вызовет постоянную по величине и знаку девиацию на всех курсах. Постоянная девиация компенсируется одновременно с устранением установочной ошибки путем поворота компаса (датчика).

Распечатать ..

 
Другие новости по теме:

  • Магнитные силы, действующие на стрелку компаса. Формула девиации
  • Сущность устранения (компенсации) полукруговой девиации
  • Списывание девиации магнитных компасов
  • Девиация компаса и вариация
  • Списывание радиодевиации - Причины радиодевиации и ее характер


  • Rambler's Top100
    © 2009
    Warning: Unknown: open(/var/lib/php/session/sess_5ngu420ds6fqk7gfut7v1jahb5, O_RDWR) failed: Permission denied (13) in Unknown on line 0 Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0