www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет » Решение навигационного треугольника скоростей
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Особенности самолетовождения в Арктике и Антарктике
Арктикой называется северная географическая зона зем­ного шара, расположенная за Северным полярным кругом (от се­верной широты 66°33') до Северного географического полюса. Антарктикой называется южнополярный бассейн, лежащий от южной широты 66°33' до Южного географического полюса. Антарктика — это обширная зона, примыкающая к Южному по­люсу и включающая в себя Антарктиду и южные части Тихо ...

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратн ...
Такая операция осуществляется по формулам: V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6. Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2. Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индек ...

» Собственная устойчивость автожира
Благодаря шарнирному креплению лопастей ротора автожиру присуща собственная статическая устойчивость в форме маятниковой устойчивости, проявляющаяся в особенности при крутых спусках. Действительно, результирующая аэродинамических сил всегда проходит через втулку ротора, которую можно рассматривать как точку привеса для всего автожира. Центр тяжести автожира лежит под втулкой, отстоя от нее по высо ...

» Расчет истинной воздушной скорости по показанию широкой стрелки комбинированного указателя скорости
На скоростных самолетах для измерения воздушной скорости устанавливается комбинированный указатель скорости КУС-1200. Его широкая стрелка показывает приборную воздушную скорость, а узкая — приближенное значение истинной воздушной скорости. Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле Vи = Vпр + ( ± Δ V) + ( ±   Δ Va) +(- Δ Vсж) + ( ± Δ ...

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Заход на посадку по радиолокационной системе РСП
Наземная радиолокационная система посадки РСП является резервным средством для захода на посадку по приборам и при­меняется, как правило, по запросу командира корабля, а в отдель­ных случаях — по требованию диспетчера. При заходе на посадку по системе РСП экипаж обязан маневрирование при подходе к аэродрому и заходе на посадку выполнять по команде диспетчера. Маневрирование осуществляется в ...

» Схематическая модель са­молета
Схематическая модель са­молета (рис. 29) немного слож­нее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в нату­ральную величину). Порядок Работы может быть такой. Фюзеляж делают из прямо­слойной сосновой или липо­вой рейки длиной 800 мм, сечением 12Х 10 мм, к хвосто­вой части сечение можно уменьшить до 8X6 мм.

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Списывание девиации на самолетах с ГТД
На самолетах с ГТД датчики дистанционных компасов установ­лены в местах, где, как показали результаты исследований, дейст­вие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА из­дал специальное указание, согласно которому:

» Вывод самолета в заданный район
Для вывода самолета в заданный район необходимо: 1.  Соединить прямой линией место самолета с пунктом, на ко­торый необходимо выйти. 2.  Измерить по карте ЗМПУ и расстояние до заданного пунк­та (рис. 19.7). 3.  Стрелки счетчика координат установить на нуль. 4.  На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5.  На задатчике ветра установить навигационное направление ветра и его скорост ...

» Определение радиодевиации
Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или види­мой радиостанции.

» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ...
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

» Несложный пилотажный змей
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построи ...

» Спарка-тренажер
Как из­вестно, свой самый первый полет курсант выполняет не один, а вдвоем с инструктором на самолете с двойным управлением. Сначала управ­ляет инструктор, а обучаемый лишь слегка придерживает ручку и запоминает необхо­димые для полета манипуля­ции. И лишь на следующем этапе инициатива переходит к ученику. Однако инструктор и тут всегда начеку — в кри­тической ситуации он всегда может вмешат ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Основные радионавигационные элементы
Основными радионавигационными элементами при использо­вании радиокомпаса являются: курсовой угол радиостанции (КУР); отсчет радиокомпаса (ОРК); радиодевиация (Δр); пеленг радиостанции (ПР); пеленг самолета (ПС).

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Модель конструкции Г. Без­рука
Модель конструкции Г. Без­рука (рис. 37). С этой моделью ее создатель успешно высту­пал на соревнованиях по воз­душному бою во Всероссий­ском пионерском лагере «Ор­ленок». Простота в изготовле­нии, неплохая скорость и ма­невренность — вот главные ка­чества модели.

» Классификация высот полета от уровня измерения
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн ...

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Способы определения угла сноса в полете
В полете угол сноса может быть определен одним из следую­щих способов: 1)   по известному ветру (на НЛ-10М, НРК-2, ветрочете и под­счетом в уме); 2)  по отметкам места самолета на карте; 3)   по радиопеленгам при полете от РНТ или на РНТ; 4)  с помощью доплеровского измерителя; 5)   при  помощи  бортового  визира или самолетного  радиоло­катора; 6)   глазомерно (по видимому бегу визирных точек).

» Расчет времени и места встречи самолетов, летящих на встречных курсах
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время   сближения самолетов tсбл= S'/ W1 + W2

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Управляемость автожира и ротор
Рассмотрим, каким образом воздействия руля глубины и элеронов передаются на ротор и переводят его плоскость вращения в нужный режим или, вернее, как при подвесных лопастях (шарнирное крепление) плоскость вращения ротора следует за фюзеляжем при наклонах последнего. Возьмем для рассмотрения 4-лопастный ротор. Предположим, что автожир нужно перевести с угла i на больший угол атаки i', для чего руле ...

» Кордовая модел
Из пяти категорий авиа­ционных моделей наиболее рас­пространенной можно при­знать категорию кордовых мо­делей. Кордовая модель — мо­дель летательного аппарата, летающая по кругу и управ­ляемая при помощи нерастягиваемых нитей или тросов (корд). Пилот, находящийся на земле, воздействуя на ор­ганы управления модели (ру­ли высоты) посредством корд, может заставить ее лететь горизонтально или вы ...

» Основные сведения о РСБН-2
Радиотехническая система РСБН-2 является неавтономной системой самолетовождения. Она состоит из наземного и самолетного оборудования. Система работает на ультракоротких волнах, поэтому обмен сигналами между самолетом и наземным маяком возможен лишь на дальностях прямой видимости, которая в основном зависит от высоты полета (табл. 18.1) и может быть определена по формуле: Д км=3,57 √Нм.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Решение навигационного треугольника скоростей
Самолетовождение » Навигационные элементы полета и их расчет  |   Просмотров: 35661  
 
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить:
1)   графически (на бумаге);
2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета;
3)   приближенно подсчетом в уме.
Решение навигационного треугольника скоростей

Решение навигационного треугольника скоростей

Так как sinφ= sin (180°—φ), а внешний угол треугольника ра­вен сумме внутренних углов, не смежных с ним, т. е. угол 180°—φ=УВ+УС, приведенные выше отношения записываются в та­ком виде:
 
Решение навигационного треугольника скоростей
Эти отношения решаются с помощью НЛ-10М (рис. 7.10). При этом необходимо помнить:
1)   при углах ветра 0—180° углы сноса положительные;
2)   при углах ветра  180—360° углы сноса отрицательные;
3) при углах ветра больше 180° на НЛ-10М устанавливают его дополнение до 360°, т. е. разность 360°—УВ;
4)  при угле ветра, равном нулю, W=V+U, а при угле ветра, равном 180°, W=V—U; для других значений углов ветра путевая скорость отсчитывается по НЛ-10М против суммы УВ+УС, при нахождении которой к УВ прибавляется  всегда   абсолютная  ве­личина УС независимо от его знака;
5)   для  углов ветра в пределах  5—175°  используется   шкала синусов, а в пределах 0,5—5 и 175—179,5° — шкала тангенсов.
Отсчет угла сноса для расчета курса следования производится с точностью до 1°, а для точного определения путевой скорости при углах ветра, близких к 0 и 180°, — с точностью до десятых долей градуса;
 
Решение навигационного треугольника скоростей
 
При помощи навигационной линейки определяются угол сноса и путевая скорость, а затем рас­считываются  курс  следования и  время полета на заданном участ­ке трассы.
Курсом следования на­зывается курс, рассчитанный с  учетом угла сноса для следования по линии заданного пути. Для каждого участка трассы по­лета курс следования, угол сносами путевая скорость перед полетом определяются по прогностическому, а в полете по измеренному ветру.
Пример.   Vи=460   км/ч;  ЗМПУ=105°;  δ = 330°;   U=80 км/ч;   S = 120    км. Определить УС, W, МКсл и t.
Решение. 1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 330°—180° — 105° = 45°.
2.   Определяем угол сноса и путевую скорость   (см.  ключ  для НЛ-10М на рис. 7.10): УСЗ=+7°; W=512 км/ч.
3.  Рассчитываем магнитный курс следования:
МКсл = ЗМПУ — (± УС) = 105° — (+ 7°) = 98°.
4.  Определяем с помощью НЛ-10М время полета: t=14 мин.
Если известны угол сноса, путевая и воздушная скорости, магнитный курс самолета, то с помощью НЛ-10М можно опре­делить ветер. Для решения этой задачи рассмотрим навигацион­ный треугольник скоростей (рис. 7.11).
 
Решение навигационного треугольника скоростей
 
Из конца вектора воздушной скорости опустим на линию пу­ти перпендикуляр. Величина путевой скорости может быть пред­ставлена в виде суммы двух отрезков: ОВ и ВС, т. е. W=OB+ВС, откуда отрезок ВС= W—ОВ.
Из прямоугольного треугольника ОАВ следует, что отрезок ОВ = VсоsУС. Так как косинусы малых углов примерно равны 1, то отрезок ОВ можно принять равным V(OB ≈ V). Подставляя это значение ОВ в выражение для отрезка ВС, получаем: ВС= W—V=ΔU.
Из прямоугольных треугольников АВО и ABC имеем:
АВ = VtgУС=ΔUtg или VtgУC= ΔUtgα.
Запишем это равенство в виде следующей пропорции, имея в виду ее основное свойство:
tgУC/ΔU= tgα/V.
Решая эту пропорцию на НЛ-10М по шкалам 4 и 5, можно определить угол а (рис. 7.12), заключенный между линией фак­тического пути и метеорологическим направлением ветра. Изме­ряется этот угол от 0 до 90°. Зная величину угла а и используя шкалы 3 и 5 НЛ-10М, по теореме синусов определим скорость ветра (рис. 7.13).
Решение навигационного треугольника скоростей

Направление ветра рас­считывается по формулам:
δ = ФМПУ-(±α)
δ = ФМПУ ± 180°+ (± α).
 Первой формулой пользуются, когда   путевая   скорость меньше воздушной, т. е. при встречно-боковом ветре, а второй — при по­путно-боковом ветре, когда путевая скорость больше воздушной. Угол α берется со знаком плюс при правом сносе самолета и со знаком минус при левом сносе.
Для быстрого и правильного определения метеорологического направления ветра и его скорости необходимо запомнить следую­щие правила:
1. При попутном ветре (УС=0, α = 0°):
δ = ФМПУ ± 180°;    U = W — Vи.
2.  При встречном ветре (УС=0°, α=0°):
δ = ФМПУ;    U = Vи — W.
3.  При боковом ветре (W ≈ Vи, α=90°):
δ= ФМПУ —(±90°).
4.  При встречно-боковом ветре (W< Vи):  
δ = ФМПУ — (± α).
5.  При попутно-боковом ветре (W> Vи):
δ = ФМПУ ± 180°+ (± α).
Пример. Vи = 450 км/ч; МК = 50°; УС = + 7°; W = 490 км/ч. Определить направление и скорость ветра.
Решение. 1. Находим разность между путевой и истинной воздушной ско­ростью; ΔU = W — Vи =490 — 450 = + 40 км/ч. Ветер попутно-боковой
2.  Определяем угол α на НЛ-10М (см. рис. 7.12): α =+ 54°.
3.   Находим скорость ветра на НЛ-10М (см. рис. 7.13): U = 68 км/ч.
4.  Опрепеляем ФМПУ и метеорологическое  направление ветра
ФМПУ = МК + (± УС) = 50° + (+ 7°) = 57°;
δ = ФМПУ ± 180° + (±α) = 57° + 180° + (+ 54°) = 291°.
Понятие об эквивалентном ветре. Для упрощения выполнения некоторых навигационных расчетов пользуются эквивалентным ветром.
 
Понятие об эквивалентном ветре
Эквивалентным ветром Uэ называется условный ве­тер, направление которого всегда совпадает с ЛЗП, а его скорость в сумме с воздушной скоростью дает такую же путевую скорость, как и действительный ветер (рис. 7.14).
Эквивалентный  ветер опреде­ляется по   специальной   таблице,
которая помещается в руководстве по летной эксплуатации и пи­лотированию каждого типа самолета. Приближенно эквивалент­ный ветер можно определить по формуле
Uэ ≈ UсоsУВ.

Решение навигационного треугольника скоростей подсчетом в уме.


Подсчетом в уме определяют угол сноса, путевую скорость и курс следования, а также направление и скорость ветра по из­вестным значениям воздушной и путевой скоростей, магнитному курсу и углу сноса.
Угол сноса и путевую скорость можно определить, пользуясь формулами:
УС=Решение навигационного треугольника скоростейsinУВ; W = Vи ±UсоsУВ,по которым рассчитывается таблица значений углов сноса и пу­тевых скоростей для основных углов ветра (табл. 7.1). Эту таб­лицу необходимо знать на память.
Таблица 7. 1
Зависимость угла сноса и путевой скорости от угла ветра
 
Угол ветра, град
Угол сноса, град
Путевая скорость,  км/ч  
0 0 Vи + U
45 + 0,7УСмакс Vи + 0,7U 
90 + УСмакс
135 + 0,7УСмакс
Vи и – 0,7U
180 0 Vи  –  U
225 — 0,7УСмакс
Vи – 0,7U   
270 — УСмакс
315 — 0,7макс Vи + 0,7U    
         

Пример. Vи = 450 км/ч; ЗМПУ=;120°;  δ = 30°;   U=60 км/ч.  Определить УС, МКсл и W.
Решение. 1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 30° + 180° — 120° = 90°.
2.   Определяем угол сноса. Так как угол ветра равен 90°, то УС = УСмакс.
УСмакс = Решение навигационного треугольника скоростей  =+8°
3.    Определяем   путевую скорость    самолета.     Поскольку    ветер    боковой W ≈  Vи =450км/ч.
4.  Определяем курс следования:
МКсл = ЗМПУ — (± УС) = 120° —(+ 8°) = 112°.
Направление  и   скорость   ветра  в   некоторых   случа­ях можно определять подсчетом в уме.
При попутном ветре, когда УС = 0°, а путевая скорость больше воздушной скорости, направление и скорость ветра определяют­ся по приведенным выше формулам:
δ = ФМПУ ± 180°;   U = W —Vи
При встречном ветре, когда УС = 0°, а путевая скорость мень­ше воздушной скорости, направление и скорость ветра определя­ются по формулам:
δ = ФМПУ;    U = Vи —W.
При боковом ветре, когда угол сноса положительный (α = +90°) или отрицательный (α = —90°), а путевая скорость равна воздушной скорости, направление и скорость ветра определяются по формулам:
δ = ФМПУ-(±90°);    U = Решение навигационного треугольника скоростей.
Пример. МК=202°; УС= —12°; Vи = 450 км/ч; W = 450 км/ч. Определить направление и скорость ветра.
Решение. 1. ФМПУ=МК+(±УС) = 202°+(—12°) = 190°.
2. δ = ФМПУ — (± α) = 190° — (—90°) = 280°
3.  Решение навигационного треугольника скоростей

Распечатать ..

 
Другие новости по теме:

  • Навигационный треугольник скоростей, его элементы и их взаимозависимость
  • Учет влияния ветра на полет самолета - Ветер навигационный и метеорологи ...
  • Полет на радиостанцию
  • Определение навигационных элементов с помощью РСБН-2
  • Способы определения угла сноса в полете


  • Rambler's Top100
    © 2009