Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_415.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337
Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338
Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339
Контроль пути по дальности с помощью боковых радиостанций » Летательные аппараты - Авиационный моделизм и самолетовождение
» Состав оборудования системы «Трасса» и принцип работы навигационного вычислителя В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1. Доплеровский измеритель путевой скорости и угла сноса (ДИСС). 2. Автоматическое навигационное устройство (АНУ); его называют также навигационным вычислителем. 3. Датчик курса. 4. Датчик воздушной скорости. 5. Задатчик угла карты. 6. Указатель угла сноса и путевой скорости. 7. ...
» Тепловой воздушный шар Так уж распорядилась история, что летательным аппаратом, на котором был осуществлен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постройки и полеты на тепловом шаре относятся к середине XVIII века. Но достоверность этих фактов пока не подтверждена документально. Одними из первых, кто хотел использовать те ...
» Способы измерения высоты полета Основными способами измерения высоты полета являются барометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно изменяющегося с высотой. Барометрический высотомер представляет собой обыкновенный барометр, у которого вместо шкалы давлений поставлена шкала высот. Такой высотомер определяет высоту полета самолета к ...
» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре Для обеспечения полета строго по установленной схеме захода на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; самолет Ан-24. Рассчитать элеме ...
» Устранение установочной ошибки рамки радиокомпаса Блок рамки устанавливается на самолет так, чтобы направление курсовой черты, отмеченное рисками на основании рамки, совпало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет равна нулю. Установочной ошибкой рамки радиокомпаса называется угол, на который отклоняется стрелка указателя от нулевого деления шкалы при КУР = 0°. Э ...
» Определение значений тригонометрических функций углов Значения синуса и косинуса данного угла α на НЛ-10М определяются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на деление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...
» Модель планера «Малыш» Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от предыдущей «схематички» у этого планера крыло сделано объемным. Постройку модели лучше начать с фюзеляжа. Из фанеры или липовой пластины толщиной 4—5 мм выпиливают пилон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...
» Схематическая модель самолета Схематическая модель самолета (рис. 29) немного сложнее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в натуральную величину). Порядок Работы может быть такой. Фюзеляж делают из прямослойной сосновой или липовой рейки длиной 800 мм, сечением 12Х 10 мм, к хвостовой части сечение можно уменьшить до 8X6 мм.
» Назначение и принцип устройства навигационной линейки НЛ-10М Навигационная линейка НЛ-10М является счетным инструментом пилота и штурмана и предназначена для выполнения необходимых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...
» Условия ведения визуальной ориентировки На ведение визуальной ориентировки оказывают влияние: 1. Характер пролетаемой местности. Это условие имеет первостепенное значение при определении возможности и удобства ведения визуальной ориентировки. В районах, насыщенных крупными и характерными ориентирами, вести визуальную ориентировку легче, чем в районах с однообразными ориентирами. При полете над безориентирной местностью или над ...
» Работа с картой Определение координат пункта по карте. В практике самолетовождения приходится производить некоторые расчеты по географическим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1) провести через заданный пункт отрезки прямых, параллельных ближайшей параллели и ближайшему меридиану; 2) в точках пересеч ...
» Использование КС-6 в полете Курсовая система позволяет выполнять полеты с локсодромическими и ортодромическими путевыми углами. Полеты по локсодромии рекомендуются в умеренном и тропическом поясах при условии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен ...
» Расчет времени и места догона впереди летящего самолета
Чтобы рассчитать время догона впереди летящего самолета, необходимо знать расстояние между самолетами, путевые скорости и время пролета самолетами контрольного ориентира. Время догона впереди летящего самолета t дог =S/ W2 — W1
» Видоизмененная поликоническая (международная) проекция Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции издается международная карта масштаба 1 : 1 000 000. Строится она по особому закону, принятому международным соглашением.
» Определение места самолета Место самолета в полете определяется в целях контроля пути, определения навигационных элементов и восстановления потерянной ориентировки. С помощью радиокомпаса место самолета может быть определено по одной и двум радиостанциям. Определение места самолета по одной радиостанции двухкратным пеленгованием и прокладкой пеленгов на карте. Для применения данного способа необходимо использовать боковые ...
» Полет на радиостанцию Полет на радиостанцию может быть выполнен пассивным или активным способом. В свою очередь активный полет на радиостанцию может быть выполнен одним из следующих способов; 1) с выходом на ЛЗП; 2) с выходом в КПМ (ППМ); 3) с любого направления подбором курса следования. Пеленги, определяемые при полете на радиостанцию, можно использовать для контроля пути по направлению.
» Точность посадки Цель этих соревнований — посадить модель в заранее обозначенное место. На расстоянии 5—6 м от стартовой линии размечают «аэродром». Это может быть круг диаметром около 1 м или лист газеты. Каждый участник после тренировочных запусков совершает зачетный полет Если после первого тура у нескольких участников модели приземлились точно на «аэродром», для определения победителя линию старта ...
» Предварительная штурманская подготовка к полету Четкость работы экипажа в воздухе во многом зависит от качества штурманской подготовки к полету, которая проводится с целью облегчения самолетовождения и обеспечения безопасности и точности выполнения полета по заданному маршруту, предотвращения потери ориентировки и прибытия в пункт назначения в заданное время.
» Порядок ведения визуальной ориентировки и точность определения места самолета Для быстрого и правильного определения места самолета визуальной ориентировкой необходимо соблюдать следующий порядок: 1. Определить на карте район вероятного местонахождения самолета, для чего от последней отметки МС отложить направление полета и пройденное расстояние, т. е. выполнить прокладку пути по курсу, скорости и времени полета. 2. В пределах найденного района выбрать на карте х ...
» Расчет максимальной дальности рубежа возврата на аэродром вылета и на запасные аэродромы Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может слу ...
» Планирование и вертикальный спуск автожира Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.
» Требования безопасности самолетовождения Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасности полета каждого самолета даже в тех случаях, когда принятые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.
» Выход на исходный пункт маршрута В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на некотором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Маневр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...
» Петля Нестерова Задача участников в этом соревнова нии — заставить модель выполнить петлю Нестерова Судьи, наблюдая за полетами сбоку, оценивают эту фигуру выполненную каждой моделью, в очках. Так, четкая и ровная петля, похожая на окруж ность, оценивается в 5 очков. петля с зависанием, вытянутая,— в 4 очка и т. д. Участник, набравший наибольшую сумму очков за три полета, признается победителем.
» Уравнение махового движения лопасти Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)
» Компоненты скорости воздуха относительно плоскости вращения ротора Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежащую в плоскости вращения V cos i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя ...
» Особенности самолетовождения в Арктике и Антарктике Арктикой называется северная географическая зона земного шара, расположенная за Северным полярным кругом (от северной широты 66°33') до Северного географического полюса. Антарктикой называется южнополярный бассейн, лежащий от южной широты 66°33' до Южного географического полюса. Антарктика — это обширная зона, примыкающая к Южному полюсу и включающая в себя Антарктиду и южные части Тихо ...
» Управляемость автожира и ротор Рассмотрим, каким образом воздействия руля глубины и элеронов передаются на ротор и переводят его плоскость вращения в нужный режим или, вернее, как при подвесных лопастях (шарнирное крепление) плоскость вращения ротора следует за фюзеляжем при наклонах последнего. Возьмем для рассмотрения 4-лопастный ротор. Предположим, что автожир нужно перевести с угла i на больший угол атаки i', для чего руле ...
Контроль пути по дальности заключается в определении пройденного от КО или оставшегося до заданного пункта расстояния. С помощью боковых радиостанций эта задача решается следующими способами: 1) пеленгованием боковой радиостанции и прокладкой ИПС на карте; 2) выходом на предвычисленный КУР или МПР; 3) выходом на траверз боковой радиостанции. Все способы применяются в том случае, когда самолет следует по ЛЗП. Для повышения точности контроля пути боковые радиостанции необходимо выбирать на удалении не более 150 км от ЛЗП. Для контроля пути по дальности пеленгованием боковой радиостанции и прокладкой ИПС на карте необходимо: 1) настроить радиокомпас на выбранную боковую радиостанцию, определить ИПС и заметить время пеленгования; 2) проложить полученный ИПС на бортовой карте от выбранной радиостанции (рис. 13.16). Линия пеленга укажет, На каком рубеже в момент пеленгования находился самолет.
Данный способ простой и обеспечивает достаточную точность контроля пути по дальности. Недостатком его является прокладка пеленга на карте, а это не всегда удобно. Пример. Маршрут полета Харьков—Воронеж. Радиостанция расположена в г. Тим; в 10 ч 40 мин на КК = 38° отсчитан КУР = 282°; Δк = +2°; Δм = +6°. Проконтролировать путь по дальности. Решение. 1. Рассчитываем ИК и ИПС: ИК = КК + (± Δк) = (+Δм) = 38° +(+2°) + ( + 6°) = 46°. ИПС = ИК + КУР ± 180° = 46° + 282° — 180° = 148°. 2. Прокладываем на карте полученный пеленг и определяем достигнутый самолетом рубеж. Это будет линия, соединяющая г. Тим и пункт Чернянка. Контроль пути по дальности выходом на предвычисленный КУР или МПР является наиболее простым и распространенным способом контроля пути по дальности и не требует прокладки пеленга на карте. Предвычисленным называется заранее рассчитанный КУР для определения момента пролета контрольного ориентира, поворотного пункта маршрута или любой другой точки, лежащей на ЛЗП. Для применения этого способа необходимо: а) при подготовке к полету: 1. Во время подготовки карты наметить на ЛЗП точки контроля (КО, ППМ) и выбрать боковые радиостанции (рис. 13.17). 2. Для каждой намеченной точки измерить ИПР на выбранную радиостанцию и определить предвычисленный МПР по формуле МПРпредв = ИПР — (±Δм). 3. Значения МПРпредв записать на бортовой карте. б) в полете: 1. Рассчитать предвычислительный КУР по формуле КУРпредв = МПРпредв — MR. 2. За 3—5 мин до расчетного времени пролета данного ориентира настроить радиокомпас на выбранную радиостанцию и следить за показанием стрелки указателя радиокомпаса. 3. В момент, когда стрелка покажет КУР == КУРпредв или ПМР = МПРпредв, самолет будет находиться над данным ориентиром.
Если выдерживаемый МК и МК, принятый для расчета КУРпредв, не равны между собой, то момент пролета данного ориентира определяется по КУР, исправленному на разность магнитных курсов. Если МКфакт больше МКрасч, то КУРпредв меньше расчетного на такую же величину и наоборот. Недостатком способа является то, что контроль пути по дальности осуществляется только в момент пролета намеченной точки. Пример. Маршрут полета: Кировоград — Полтава — Харьков. Определить КУРпредв на РНТ Днепропетровск для контроля момента пролета ППМ Полтава, если УС= —5°. Решение. 1. Измеряем транспортиром ИПР от Полтавы на радиостанцию Днепропетровска и ЗИПУ от Кировограда на Полтаву: ИПР=165°; ЗИПУ=55°. 2. Находим МПРпредв., ЗМПУ и МК: МПРпредв = ИПР — (± Δм) = 165° — (+ 5°) = 160°. ЗМПУ = ЗИПУ —(± Δм) =55° — (+5°) =50°. МК = ЗМПУ — (± УС) = 50° — (— 5°) = 55°. 3. Рассчитываем предвычисленный КУР: КУРпредв = МПРпредв — МК = 160° — 55° = 105°. Выход на траверз боковой радиостанции позволяет осуществлять контроль пути по направлению и дальности. Для контроля пути этим способом необходимо: а) при подготовке к полету выбрать боковые радиостанции для участков маршрута, нанести перпендикулярные отметки на ЛЗП, измерить и записать на карте расстояние Sтр по перпендикуляру от радиостанции до ЛЗП (рис. 13.18); б) в полете: 1. Настроить радиокомпас на боковую радиостанцию; на КУР=45° (315°) + (±УС) включить, а на КУРтр=90° (270°) + (±УС) остановить секундомер. 2. По путевой скорости и времени, отсчитанному по секундомеру, определить пройденное самолетом расстояние: Sпр = Wtпр Если оно равно Sтр, то Самолет находится на ЛЗП. При Sпр≠Sтр самолет уклоняется от ЛЗП.
3. Определить линейное, боковое уклонение самолета от ЛЗП по формулам: ЛБУ = Sтр — Sпр (радиостанция справа); ЛБУ = Sпр — Sтр (радиостанция слева). Пример. ЗМПУ= 10°; Stp = 50 км; МК=5°; в 10 ч 05 мин КУР = 50°; в 10 ч 13 мин КУРтр=95°; W=410 км/ч. Определить Sпр и ЛБУ при пролете траверза радиостанции. Решение. 1. Находим пройденное самолетом расстояние: Sпр = Wtпр — 55 км. 2. Определяем линейное боковое уклонение: ЛБУ = Sтр — Sпр = 50 — 55 = — 5 км.
Warning: Unknown: open(/var/lib/php/session/sess_9ad3komq3nsae8edham70r3c32, O_RDWR) failed: Permission denied (13) in Unknown on line 0
Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0