Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_427.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337 Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338 Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339 Полет на радиопеленгатор » Летательные аппараты - Авиационный моделизм и самолетовождение
www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование угломерных радиотехнических систем » Полет на радиопеленгатор
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
return_links(); ?>
return_block_links(); ?>
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Выполнение радиодевиационных работ
Радиодевиационные работы проводятся штурманом с целью определения, компенсации радиодевиации и составления графика остаточной радиодевиации в следующих случаях: 1)  при установке на самолет, нового радиокомпаса или отдель­ных его блоков; 2)   после выполнения регламентных работ, при которых заме­нялись отдельные блоки радиокомпаса; 3)  при обнаружении в полете ошибок в показаниях указателя курсовы ...

» Изображение ориентиров на экране индикатора
Для распознавания наблюдаемой на экране индикатора све­товой картины необходимо знать, как выглядят на экране различ­ные наземные объекты.

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Предполетная штурманская подготовка
Предполетная штурманская подготовка организуется и про­водится командиром корабля перед каждым полетом с учетом конкретной навигационной обстановки и метеорологических ус­ловий, складывающихся непосредственно перед вылетом. В этот период каждый член экипажа выполняет по своей специально­сти перечень обязательных действий в соответствии с Инструк­цией по организации и технологии предполетной подгот ...

» Категории и классы летающих моделей
Основным документом, ре­гламентирующим постройку авиационных летающих моде­лей, своеобразным сводом за­конов являются «Правила про­ведения соревнований по авиа­модельному спорту в СССР». В основе этих Правил — поло­жения кодекса ФАИ — техни­ческие требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены сле­дующие категории авиацион­ных моделе ...

» Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с ...

» Пенопласт в авиамоделиз­ме
В конструкции многих моделей, предлагаемых в этой книге, применяют пенопласт. Поэтому логичным будет пред­ложить некоторые практиче­ские советы по работе с ним. Пенопласт — вспененный полистирол нли полихлорви­нил, обладает низкой плот­ностью и большими возмож­ностями. Для изготовления авиамоделей применяют в ос­новном пенопласт марки ПС (полистирольный), ПХВ (по­лихлорвиниловый) и упаковоч­ ...

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» Полет от радиостанции
Полет от радиостанции в заданном направлении может быть выполнен в том случае, если она расположена на ЛЗП в ИПМ, ППМ или контрольном ориентире. В этом случае полет осуществляется одним из следующих спо­собов: с выходом на ЛЗП; с выходом в КПМ (ППМ). Пеленги, определяемые при полете от радиостанции, можно ис­пользовать для контроля пути по направлению.

» Устройство управляемой ракеты
Несмотря на большое раз­нообразие, все ракеты имеют много общего в своем устрой­стве. Основными частями управляемой ракеты являются полезный груз, корпус, двига­тель, бортовая аппаратура си­стемы управления, органы управления и источники энер­гии. Полезный груз — объект для проведения иссле­дований или других работ, размещается в головном от­секе и прикрывается головным обтекателем. Корпус р ...

» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Определение магнитного пеленга ориентира с помощью девиационного пеленгатора
Для определения МПО необходимо: 1)  установить треногу в центре площадки, где будет списывать­ся девиация; 2)   закрепить пеленгатор на треноге и установить его в горизон­тальное положение по уровню; 3)   отстопорить лимб и магнитную стрелку; 4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб; 5)   разворачивая визирную рамку и наблюдая ...

» Подготовка к выполнению и выполнение девиационных работ
При подготовке к выполнению девиационных работ необходимо: 1)   проверить состояние девиационного пеленгатора и исправ­ность его магнитной системы; 2)   выбрать площадку для девиационных работ, удаленную не менее чем на 150—200 м от стоянок самолетов, строений и линий высоковольтных передач; площадка должна быть ровной и иметь хороший обзор; 3)  измерить из центра площадки при помощи    деви ...

» Основные правила самолетовождения - Порядок выполнения маршрутного полета
Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установлен­ным маршрутам. В основе успешного выполнения полетов лежит строгое соблю­дение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1)   сохранять ориентировку в течение вс ...

» Формулы полных сил ротора
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.

» Игры и соревнования. Воздушный «почтальон»
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема. Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Элементарные силы и элементарный крутящий момент лопасти
Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.

» Уравнение махового движения лопасти
Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)

» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Особенности использования самолетной радиолокационной станции РПСН-3
Радиолокационная станция РПСН-3 выпускается в нескольких вариантах. Комплектность станции зависит от типа самолета. На самолете Ан-24 для работы с РПСН-3 установлены: пульт управ­ления, пульт контроля и один индикатор. Станция имеет семь режимов работы: «Снос», «Обзор», «Дальний обзор», «Горы — Грозы», «Изо—Эхо», «Самолеты» и «Маяк». Режим «Маяк» на всех вариантах станции не использует ...

» Перевод футов в метры и обратно
Футы переводятся в метры, а метры в футы по формулам: Hм = Hфуты:3,28; Hфуты = Нм·3,28. Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элеме ...

» Инструмент и материалы для авиакружка
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр ...

» Определение путевой скорости самолета
При полете самолета от радиолокатора и на радиолокатор пу­тевая скорость определяется в следующем порядке: 1.  Запросить у диспетчера место самолета и заметить время. 2.  Через 7—10 мин полета снова запросить место самолета и заметить время. 3.  Определить пройденный самолетом путь как разность между полученными дальностями:   Sпр =Д2—Д1 или Sпр=Д1—Д2 4.  По пройденному расстояни ...

» Расчет времени и места набора высоты заданного эшелона
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна. Рис. 5.5. Определение времени и места набора высоты ...

» Карты, применяемые в авиации - Назначение карт
В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1)   прокладки и изучения маршрута полёта; 2)   измерения путевых углов и   расстояний    между   пунктами маршрута; 3)   определения географических координат пунктов; 4)   нанесения точек расположения радиотехнических    средств, обеспечивающих полет; 5)   получения ...

» Электролеты
В настоящее время среди авиамоделистов нашей страны все большее распространение получают модели самолетов с электродвигателем — электролеты. Их строят как для свободного полета, так в кор­довом варианте. И если кон­струирование свободнолетающих электролетов дело не­простое, то изготовление кор­довых «электричек» по силам многим любителям малой авиа­ции. Кордовые авиамодели с электродвигателе ...

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Полет на радиопеленгатор
Самолетовождение » Использование угломерных радиотехнических систем  |   Просмотров: 17994  
 
При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашиваются в телефонном режиме обратные пеленги (ОП) словами: «Дайте обратный пеленг».
При использовании KB радиопеленгаторов для контроля пути по направлению запрашиваются пеленги в телеграфном режиме кодовым выражением ЩДМ, которое означает: «Сообщите магнит­ный курс, с которым я должен направиться к вам при отсутст­вии ветра».
Обратном пеленгом (ЩДМ) называется угол, заклю­ченный между северным направлением магнитного меридиана, проходящего через радиопеленгатор, и направлением продолжения линии, проложенной от самолета через радиопеленгатор (см. рис. 15.1). ОП (ЩДМ) измеряется от северного направления магнитно­го меридиана до указанной выше линии по ходу часовой стрелки от 0 до 360°.
Обратный   пеленг — это   измененный на 180° прямой   пеленг.
Полет на радиопеленгатор может быть выполнен пассивным и активным способами. В свою очередь активный полет на радиопе­ленгатор может быть выполнен:
1)   с выходом на ЛЗП;
2)   с выходом в КПМ (ППМ);
3)   с любого направления подбором курса следования.

Контроль пути по направлению при полете на радиопеленгатор

Рис. 15.5. Контроль пути по направлению при полете на радиопеленгатор

Контроль пути по направлению при полете на радиопеленгатор осуществляется путем запроса обратного пеленга (ЩДМ) и срав­нением его с ЗМПУ. В результате этого сравнения определяется дополнительная поправка (ДП). Если полученный ОП = ЗМПУ, то самолет находится на ЛЗП, если ОПЗМПУ, то самолет находится левее ЛЗП (рис. 15,5).
Величина дополнительной поправки ДП = ЗМПУ— ОП.
Зная пройденное и оставшееся расстояние (время), можно опре­делить боковое уклонение:
БУ = Sост/Sпр ·ДП.
Фактический угол сноса УСф= (±УСР) + (±БУ).
Пример. ЗМПУ = 90°; МКр = 95°; ОП = 85°; Snp = 55 км; Sост = 115 км. Определить ДП, БУ и УСФ.
Решение: 1. ДП — ЗМПУ— ОП = 90° — 85° = +6°.
2. БУ = Sост/Sпр ·ДП = 115/55 · 5 = + 10.
3.  УСф = (± УСр) + (± БУ) = (—5°) + (+ 10°) = + 5°.
Полет на радиопеленгатор с выходом на ЛЗП применяется при значительном уклонении самолета от ЛЗП, а также в случаях, когда необходимо строго следовать по ЛЗП. Порядок выполнения полета следующий (рис. 15.6):
1.  Пройти ИПМ (ППМ) с МКР или МК = ЗМПУ.
2.  Через 5 — 15 мин полета запросить у диспетчера ОП (ЩДМ), сравнить его с ЗМПУ, определить сторону уклонения, величину дополнительной поправки и бокового уклонения:
ДП = ЗМПУ—ОП;      БУ = Sост/Sпр ·ДП.
3.  Задаться углом выхода    (Увых берется в пределах 20—90°), рассчитать МК   выхода  и вывести   самолет на ЛЗП.
(МКвых = ЗМПУ±Увых),

Полет на радиопеленгатор с выходом на ЛЗП

Рис.  15.6. Полет на радиопеленгатор с выходом на ЛЗП

4.  Следуя с МКвых, чаще запрашивать ОП и определить мо­мент выхода на ЛЗП по ОПвых=ЗМПУ.
5.  После выхода на ЛЗП установить самолет на МК следова­ния МКсл=МКр— (±БУ) или МКсл = ЗМПУ — (±УСФ).
6.  В дальнейшем контроль пути по направлению осуществлять периодическим запросом ОП и сравнением их с ЗМПУ  (ОПсл = ЗМПУ).
Пример. ЗМПУ=86°; МКР = 90°;  Sпр = 60  км; ОП = 80°;  Sост = 120  км; Увых = 30°. Определить данные для выхода и следования по ЛЗП. Решение. 1. ДП = ЗМПУ — ОП=86°— 80°= +6°.
2.  Определяем БУ и УСф.
БУ = Sост/Sпр ·ДП = 120/60·6 = + 12°.
УСф = (± УСр) + (± БУ) = (— 4°) + (+ 12°) = + 8°.
3.  Находим МКвых и ОПвых:
МКвых = ЗМПУ ± Увых = 86° — 30° = 56°.
ОПвых = ЗМПУ = 86°.
4.  Рассчитываем МКсл и ОПсл
МКсл =МКР —(±БУ) = 90° —( + 12°) = 78°.
МКсл = ЗМПУ — (+ УСф) = 86° — (+ 8°) = 78°.
ОПсл = ЗМПУ = 86°.

Полет на радиопеленгатор с выходом в КПМ (ППМ) применя­ется, когда мало уклонение самолета от ЛЗП или оставшееся рас­стояние до КПМ (ППМ). Порядок выполнения полета следующий (рис. 15.7):
1.  Пройти ИПМ (ППМ) с МКР или с МК = ЗМПУ.
2.  Через 5—15 мин   полета   запросить   ОП1   сравнить   его с ЗМПУ и определить сторону уклонения и величину дополнительной поправки ДП = ЗМПУ—ОП1
3.  По пройденному и оставшемуся расстоянию  (времени) по­лета определить БУ и рассчитать ПК:
БУ = Sост/Sпр ·ДП;   ПК = БУ + ДП
Полет на радиопеленгатор с выходом в КПМ

Рис. 15.7. Полет на радиопеленгатор с выходом в КПМ (ППМ)

4.  Определить курс следования в КПМ (ППМ)   и установить на него самолет: МКкпм =МКР— (±ПК).
5.  В дальнейшем контроль пути по направлению осуществлять периодическим запросом обратных пеленгов и сравнением их с пер­вым пеленгом: ОПсл = ОП1.
Пример. ЗМПУ = 86°;  МКР = 80°; Sпр=100 км;  ОП1 = 80°;  Sост = 68 км. Определить данные для полета в КПМ (ППМ).
Решение. 1. ДП = ЗМПУ— ОП1 = 86° — 80°= +6°.
2.  Определяем БУ и ПК:
БУ = Sост/Sпр ·ДП = 68/100·6 = + 4°.
ПК = БУ + ДП = (+ 4°) + (+ 6°) = + 10°.
3.  Рассчитываем МКкпм и находим ОПсл:
МКкпм=МКР — (± ПК) = 80° — (+ 10°) = 70°.
ОПсл = ОП1 = 80°.

Полет на радиопеленгатор с любого направления подбором курса следования применяется при выходе на радиопеленгатор по­сле обхода зон грозовой деятельности, при восстановлении поте­рянной ориентировки, когда отсутствуют данные о ветре. Порядок выполнения полета следующий (рис. 15.8):
 
Полет на радиопеленгатор с любого направления подбором курса следования
Рис.  15.8. Полет на радиопеленгатор    с   любого направления    подбором курса следования

1.  Установить связь с диспетчером,    запросить   обратный пе­ленг, установить самолет на MK1—ОП1 заметить курс и продол­жать полет с этим курсом.
2.  Через 3—5 мин полета запросить ОП2, сравнить его с ОП1 и определить сторону сноса самолета.
Если ОП2 = ОП1 или отличается от него на 1—2°, то считается, что курс на радиопеленгатор подобран и MK1 можно принять за МКсл; если ОП2 > ОП1, то самолет сносится влево, если ОП2 < ОП1, то самолет сносится вправо.
3.  При изменении пеленга более чем на 2° установить самолет на курс следования с учетом предполагаемого сноса. МК2=ОП2 — (±5°).
Обычно первую поправку на снос берут равной 5, вторую 8 и третью 10°.
4.  Через 3—5 мин запросить ОП3, сравнить его с ОП2 и прове­рить правильность взятого упреждения на снос. Если пеленг изме­няется в прежнюю сторону, то поправку на снос необходимо уве­личить, т. е. МК3 = ОП3 — (±8°).
Обычно после двух-трех доворотов самолета на предполагае­мый угол сноса практически подбирается курс следования для полета на радиопеленгатор. Курс считается подобранным, если каждый последующий пеленг равен предыдущему или отличается от него на 1—2°.
Если обратные пеленги начинают изменяться в другую сторо­ну, то это значит, что упреждение на снос было взято слишком большое. В этом случае необходимо установить самолет на МК средний между последними двумя МК.
При подборе курса необходимо помнить следующее: если полу­чаемые пеленги увеличиваются, то курсы должны увеличиваться, а если пеленги уменьшаются, то и курсы должны уменьшаться.
Пример. ОП1=100°;   ОП2 = 96°; ОП3=93°;  ОП4=94°.   Подобрать курс  сле­дования для активного полета на радиопеленгатор.
Решение. 1. MK1— ОП1=1000.
2.  Определяем сторону сноса и МК2. Так как ОП2<ОП1 то снос самолета правый; МК2=ОП2— (+5°) =96°— (+5°) =91°.
3.  Находим МК3 и МКсл:
МК3=ОП3 — (+8°)=93°— (+8°) =85°.
МКсл=85°.
А. Определение момента пролета радиопеленгатора или его траверза
Полет самолета на радиопеленгатор пассивным или активным способом заканчивается определением момента пролета самолета над радиопеленгатором. Контроль за приближением к радиопелен­гатору осуществляется:
по расчетному времени прибытия на радиопеленгатор;
по резкому изменению обратных пеленгов.
Момент пролета радиопеленгатора определяется:
 
Полет на радиопеленгатор с любого направления подбором курса следования

1.  По изменению   обратного   пеленга    (ЩДМ)    на величину, близкую к 180° (рис. 15.9).
2.  По команде «Пролет», передаваемой с земли.
Обычно самолет пролетает не точно над радиопеленгатором, а несколько в стороне от него, справа или слева. В этом случае мо­мент пролета радиопеленгатора определяется по пролету его тра­верза. Величина обратного пеленга в момент пролета траверза (рис. 15.9) равна ФМПУ +90°, когда радиопеленгатор справа, ФМПУ +270°, когда радиопеленгатор слева, или иначе, ОПтр= ФМПУ±90°.
Сторону нахождения радиопеленгатора по отношению самоле­та определяют по изменению получаемых обратных пеленгов (ЩДМ). Если обратные пеленги (ЩДМ) увеличиваются, то это значит, что радиопеленгатор находится относительно самолета справа, если же обратные пеленги (ЩДМ) уменьшаются, радио­пеленгатор находится относительно самолета слева.
Пример. МК=65°; УС = +5°; радиопеленгатор слева. Определить обрат­ный пеленг траверза.
Решение. 1. ФМПУ=МК+(±УС) =65° + ( + 5°) =70°.
2. ОПтр = ФМПУ—90°=70°—90°+360° = 340°.

Распечатать ..

 
Другие новости по теме:

  • Полет от наземного радиопеленгатора
  • Полет от радиостанции
  • Полет на радиостанцию
  • Контроль и исправление пути при полете от радиолокатора и на радиолокатор
  • Выход на радиостанцию с нового заданного направления


  • Rambler's Top100
    © 2009
    Warning: Unknown: open(/var/lib/php/session/sess_lbrjqfid692fag59h3vl2tra21, O_RDWR) failed: Permission denied (13) in Unknown on line 0 Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0