www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование радиолокации и навигации » Использование РПСН-2 в режимах «Обзор» и «Дальний обзор»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Заход на посадку по радиолокационной системе РСП
Наземная радиолокационная система посадки РСП является резервным средством для захода на посадку по приборам и при­меняется, как правило, по запросу командира корабля, а в отдель­ных случаях — по требованию диспетчера. При заходе на посадку по системе РСП экипаж обязан маневрирование при подходе к аэродрому и заходе на посадку выполнять по команде диспетчера. Маневрирование осуществляется в ...

» Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высот ...
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

» Запуск змеев
Как было ска­зано ранее, воздушные змеи запускают на тонком, прочном шнуре-леере. Особенно внима­тельно надо отнестись к выбо­ру места запуска. Необходимым условием  полета змея является ветер. Змеи различных размеров летают приопределенной скорости  ветра. Большой и тяжелый змей нав­ряд ли удастся запустить при слабом ветре, когда уверенно может   держаться   в   воздухе змей, изображенный на рис ...

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Схематическая модель пла­нера разработана ал­ма-атинскими авиамоделиста­ми
Схематическая модель пла­нера (рис. 23) разработана ал­ма-атинскими авиамоделиста­ми. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный па­ритель фитильным приспособ­лением для принудительной по­садки. Постройку такой «схематич­ки» начинают с крыла. Прежде всего заготовки кромок изго­тавливают с помощью спе­циально изготовленного при­способлени ...

» Работа с картой
Определение координат пункта по карте. В практике самолето­вождения приходится производить некоторые расчеты по географи­ческим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1)  провести через заданный пункт отрезки прямых, параллель­ных ближайшей параллели и ближайшему меридиану; 2)  в точках пересеч ...

» Периодическое изменение угла взмаха лопасти и угла атаки сечения лопасти
Для выяснения махового движения па разных режимах и изменении угла β по ψ а так же для выяснения влияния махового движения на истинный угол атаки α сечения по вышеприведенным формулам сделан подсчет для ротора, имеющего следующие употребительные в практике параметры: γ=10; Θ=2˚

» Кордовая модел
Из пяти категорий авиа­ционных моделей наиболее рас­пространенной можно при­знать категорию кордовых мо­делей. Кордовая модель — мо­дель летательного аппарата, летающая по кругу и управ­ляемая при помощи нерастягиваемых нитей или тросов (корд). Пилот, находящийся на земле, воздействуя на ор­ганы управления модели (ру­ли высоты) посредством корд, может заставить ее лететь горизонтально или вы ...

» Методика проведения занятий
В пионерском лагере из-за непродолжительной ра­боты кружка важное значение приобретает организация и со­держание каждого занятия. Вопросы методики проведе­ния занятий, их организацион­ная четкость во многом опре­деляются опытом руководи­теля. Большую часть руководи­телей кружков в пионерских лагерях составляют энтузи­асты технического творчества, слабым местом которых явля­ется недостаточное знани ...

» Расчет времени и места начала снижения
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром. Рис. 5.6. Расчет времени набора высоты  

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Сокращенные обозначения и условные знаки, принятые в самолетовождении
Точки и линииМС — место   самолета ИПМ — исходный   пункт   маршрута ППМ — поворотный   пункт   маршрута КО — контрольный   ориентир КЭ — контрольный   этап ЛЗП — линия   заданного   пути ЛФП — линия фактического пути АЛП — астрономическая   линия   положения РНТ — радионавигационная   точка ОПРС — отдельная   приводная   радиостанция РСБ ...

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

» Модель воздушного боя «Юниор»
Кордовая модель воздуш­ного боя «Юниор» (рис. 38) разработана под двигатель с рабочим объемом 1,5 см3. Вы­полнена она по схеме «летаю­щее крыло». Основной сило­вой элемент модели — кром­ка-лонжерон. Его выполняют следующим образом: из липы или сосны выстругивают рей­ку сечением 20x3 мм и дли­ной 750 мм, к боковым сто­ронам которой приклеивают еще три рейки сечением 10х 3 мм: с передней &mdas ...

» Модель планера
Модель планера — конструк­ция,    которая    воспроизводит лишь схему основных частей планера, не копирующая его внешне. Знакомство с моделями пла­неров лучше начать с самой простой модели, изготовленной из бумаги. В практике авиамоделизма ее называют учеб­ной (рис. 16).

» Расчет времени и места встречи самолетов, летящих на встречных курсах
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время   сближения самолетов tсбл= S'/ W1 + W2

» Предполетная проверка НИ-50БМ
Для проверки НИ-50БМ перед полетом необходимо: 1.  Включить электропитание   прибора   по  переменному  и  по­стоянному току. 2.  Включить и подготовить к работе ГИК.    Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3.  Установить на автомате курса и задатчике ветра МУК=МК самолета. 4.  Ввести в задатчик ветра направлен ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Основные радионавигационные элементы
Основными радионавигационными элементами при использо­вании радиокомпаса являются: курсовой угол радиостанции (КУР); отсчет радиокомпаса (ОРК); радиодевиация (Δр); пеленг радиостанции (ПР); пеленг самолета (ПС).

» Наука о точном, надежном и безопасном вождении воздушных судов
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую. Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное ...

» Первые воздушные змеи
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю. Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминаю ...

» Определение летающих моделей
Модель планера — модель летательного аппарата, не обес­печенная собственной силой тяги, у которой подъемная си­ла образуется аэродинамиче­скими силами, действующими на неподвижно закрепленные поверхности. Запускают при помощи леера не длиннее 50 м. Технические требо­вания: площадь несущей по­верхности — 32—34 дм2, мини­мальная масса — 410 г, макси­мальная удельная грузоподъ ...

» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется отно­сительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса само­лета применяются различные способы отсчета ортодромических пу­тевых углов и курсов самолета, выбор которы ...

» Определение места самолета
Место самолета определяется с целью полного контроля пути, определения навигационных элементов полета и восстановления потерянной ориентировки. В зависимости от условий полета и навигационной обстановки МС может быть определено: по одному радиопеленгатору; по двум радиопеленгаторам; по радиопеленгатору и радиостанции.

» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Заполнение штурманского бортового журнала в полете и записи на карте
В процессе выполнения полета штурман выполняет различные навигационные расчеты и измерения. Так как запомнить результа­ты всех расчетов и измерений невозможно, штурман записывает их в бортовом журнале, а некоторые отмечает на карте. В бортовом журнале и на карте рекомендуется четко и быстро записывать только те данные, которые нужны для определения на­вигационных элементов полета, контроля и испра ...

» Способы определения ортодромических путевых углов
В практике ортодромические путевые углы по участкам марш­рута (см. рис. 23.4) могут определяться одним из следующих спо­собов: 1.  Учетом  угла   разворота. Для применения этого способа вначале определяют ортодромический путевой угол первого этапа маршрута, равный азимуту ча­стной ортодромии, измеренный в точке вылета самолета. Последу­ющие путевые углы определяются по предыдущему с учетом угла ра ...

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Использование РПСН-2 в режимах «Обзор» и «Дальний обзор»
Самолетовождение » Использование радиолокации и навигации  |   Просмотров: 9468  
 
Эти режимы предназначены для обзора земной поверхности, пе­риодического определения места самолета, определения начала снижения с эшелона и для выполнения маневра захода на по­садку.
Для работы станции в режиме «Обзор» при управлении с пуль­та пилота необходимо:
1.  Проверить, чтобы все органы контроля и управления нахо­дились в исходных положениях.
2.  Переключатель «Пилот—Штурман» установить в положение «Пилот».
3.  Переключатель   «Режим   работы»   установить в   положение «Обзор».
4.  Включить АЗС с надписью «Эмблема».
5.  Переключатель  «Выключено — Станция — Высокое»  устано­вить в положение «Станция».
6.  Убедиться по стрелочному    прибору в наличии    питающих напряжений.
7.  Через 2—3 мин после включения станции убедиться в нали­чии качения рефлектора антенного блока по азимуту.
8.  Ручкой   «Яркость» отрегулировать  яркость  свечения  линии развертки.
9.  Ручной «Фокус» сфокусировать линию   развертки и изобра­жение масштабных меток.
10.  Отрегулировать яркость масштабных меток с помощью руч­ки    «Метки I»,   расположенной на   коробке   предохранителей   и регулировок,  и  ручки   «Метки», расположенной на   пульте штур­манна.
11.  Через 5 мин после включения станции переключатель «Вы­ключено — Станция — Высокое»  установить  в  положение «Высо­кое» и закончить проверку работоспособности станции.
Для работы станции в режиме «Обзор» при управлении с пульта штурмана необходимо:
1.  Переключатель   «Пилот-Штурман» установить в положение «Штурман».
2.  Переключатель «Режим   работы»   установить   в   положение «Обзор».
3.  Переключатель «Канал I—Канал II» поставить в положе­ние «Канал I».
Остальные действия выполняются так же, как и при работе с пульта пилота.При работе станции в режиме «Обзор» загораются сигнальные лампочки «Обзор», которые предупреждают о работе станции в режиме, не обеспечивающем предупреждение столкновений со встречными самолетами и горными вершинами.
4.  Добиться  четкого  и  контрастного изображения  на  экране пролетаемой местности и ориентиров, для чего, независимо с ка­кого пульта ведется управление, необходимо:
а)   ручкой «РРУ» на пульте штурмана отрегулировать необходимое усиление по видеоканалу и добиться наиболее четкой световой картины;
б)   ручкой    «Наклон антенны» подоб­рать такой наклон антенны, при котором радиолокационные отражения на экранах индикаторов станут  хорошо различимы­ми, т. е. добиться наиболее качественного изображения;
в)   ручкой «Дифференцирование»   по­добрать такое ее положение, при котором изображение интересующего    ориентира станет наиболее четким,    т. е. добиться контрастного  изображения  (убрать сла­бые сигналы);
г)   после достижения четкого и устой­чивого изображения пролетаемой местности   произвести   опознавание   наблюдае­мых на экране ориентиров.
При работе станции в режиме «Обзор» облучение земной по­верхности производится веерным лучом (типа «косеканс квад­рат»). Для повышения дальности обзора земной поверхности и просмотра общего фона местности в станции предусмотрен режим «Дальний обзор». В этом режиме облучение земной поверхности производится веерным и узким лучами. Переключение лучей осу­ществляется автоматически в момент нахождения рефлектора ан­тенного блока в крайних положениях по азимуту.
Дальность до радиолокационных ориентиров определяется по меткам дальности. На масштабе развертки 50 км метки дальности формируются через 10 км, а на остальных масштабах — через 40 км. Дальность до ориентиров отсчитывается от точки начала развертки. В РПСН-2 предусмотрен независимый выбор масштаба развертки пилотом и штурманом. Исключением является лишь од­но положение. При управлении станцией с пульта штурмана в ре­жиме «Обзор» и установке на индикаторе штурмана масштаба развертки 50 км на индикаторе пилота автоматически тоже вклю­чается масштаб 50 км. В этом случае на пульте пилота загорает­ся сигнальная лампочка «Вкл. 50 км».
Для повышения разрешающей способности станции по дально­сти в режиме «Обзор» при развертке 50 км автоматически уста­навливается уменьшенная вдвое длительность излучаемого им­пульса при повышении вдвое частоты посылок. Обычно импульсы следуют с частотой 500 гц при длительности 2 мксек, а в режиме «Обзор» при управлении от пульта штурмана на масштабе раз­вертки 50 км частота повторения импульсов становится равной 1000 гц при длительности 1 мксек. Метки дальности позволяют определить наклонную дальность (НД) до наблюдаемых на экране ориентиров.
Наклонной дальностью ориентира называется расстоя­ние по наклонной линии от самолета до ориентира (рис. 17.1). Для определения НД необходимо отсчитать количество меток на экра­не до наблюдаемого ориентира и умножить на расстояние между ними. Если ориентир находится между метками, то наклонная дальность до него определяется путем интерполяции. Когда наклонная дальность до ориентира более пяти высот по­лета, то ее практически принимают за горизонтальную дальность (ГД). Если наклонная дальность менее пяти высот, то ее при не­обходимости перерасчитывают в горизонтальную дальность по формуле
ГД = НДsin(90°—α).
Эта формула решается на НЛ-10М (рис. 17.2).
Пример.   НД=20 км; Н=9000 м. Определить ГД. Решение.
α = 27°; 90° — α = 63°; ГД = 18 км.
 
Использование РПСН-2
 
Направления на радиолокационные ориентиры, наблюдаемые на экране, определяются по шкале курсовых углов. Шкалы индикаторов оцифрованы от 0 до 90° и от 270 до 0°. Они обеспечивают отсчет курсовых углов в передней полусфере. На индикаторе штурмана шкала оцифрована через 10°, а на ин­дикаторе пилота — через 20°. Цена делений соответственно равна 5 и 10°. Шкалы обоих индикаторов имеют подсвет. Яркость под­света шкалы индикатора пилота регулируется ручкой «Подсвет шкалы пилота», вынесенной на приборную доску пилота, а шкалы индикатора штурмана — ручкой «Подсвет шкалы», расположенной на пульте штурмана. Яркость подсвета шкал индикаторов подби­рается наиболее удобной для данных условий освещения.
Место самолета с помощью РПСН-2 определяется в режиме «Обзор» или «Дальний обзор» одним из следующих способов:
1.  По пролету характерного радиолокационного ориентира.
2.  По пеленгу и дальности радиолокационного ориентира.
3.  По пеленгам двух радиолокационных ориентиров.
4.  По дальностям до двух радиолокационных ориентиров. Для определения  места самолета необходимо предварительно произвести счисление пути по курсу, скорости и времени полета и от полученной точки ориентировочно определить курсовые углы и расстояния до радиолокационных ориентиров. Затем сопоста­вить изображение местности на карте с ее изображением на эк­ране индикатора. Используя ориентировочные курсовые углы и дальность и принимая во внимание контуры, размеры ориентиров и их расположение, опознать наблюдаемые на экране ориентиры. После опознавания ориентиров определить место самолета одним из вышеуказанных способов.
Определение места самолета по пролету харак­терного радиолокационного ориентира применяется, когда впереди на ЛЗП на небольшом удалении от самолета имеет­ся характерный радиолокационный ориентир.
На экране РПСН-2 наблюдать ориентиры, расположенные по вертикали, нельзя из-за отсутствия задержки запуска развертки. Поэтому контроль за приближением самолета к ориентиру произ­водят по экрану индикатора, а момент пролета ориентира опреде­ляют по времени.
Для определения места самолета указанным способом необхо­димо:
1.  Опознать на экране выбранный для определения места само­лета ориентир.
2.  При подходе к ориентиру переключатель «Масштаб разверт­ки» поставить в положение 50 км, чтобы получить на экране более детальное изображение пролетаемой местности.
3.  В момент прихода опознанного ориентира на дальность 20 — 30 км пустить секундомер и рассчитать по путевой скорости вре­мя полета до ориентира. По истечении расчетного времени отме­тить пролет самолета над радиолокационным ориентиром.
Определение места самолета по пеленгу и даль­ности радиолокационного ориентира является наибо­лее распространенным способом, так как чаще всего на экране ин­дикатора наблюдается лишь один опознанный радиолокационный ориентир, расположенный, как правило, в стороне от ЛЗП. Кроме того, этот способ позволяет наиболее просто и быстро определить место самолета.
Для определения  места самолета в этом  случае необходимо:
1.  Опознать ориентир на экране индикатора.
2.  Определить дальность и курсовой угол опознанного ориен­тира и одновременно снять отсчет МК и заметить время.
3.  Рассчитать ИПС по формуле
ИПС = МК + (± Δм) + КУО ± 180°.
При пеленгах, примерно равных 90 или 270°, когда расстояние до ориентира более 150—200 км. ИПС необходимо рассчитывать с учетом поправки на угол схождения меридианов.
4.  Проложить на карте от опознанного ориентира ИПС и на линии   пеленга  отложить горизонтальную   дальность   (рис. 17.3).
Использование РПСН-2
 
Полученная точка на карте будет местом самолета в момент пе­ленгования ориентира.
Точность определения места самолета этим способом составля­ет 1—3 км.
Определение места самолета по пеленгам двух радиолокационных ориентиров применяется, когда на экране индикатора нет меток дальности. Порядок определения места самолета при этом следующий:
1.  Выбрать на экране два опознанных ориентира, расположен­ных так, чтобы угол между направлениями на них был в пределах 60—90°.
2.  Определить   курсовые   углы   выбранных  ориентиров,   снять отсчет МК. и заметить время.
3.  Рассчитать  истинные пеленги  самолета  и  отложить  их на карте от опознанных ориентиров (рис. 17.4).
4.  Точка пересечения пеленгов даст место самолета к момен­ту отсчета курсовых углов.
Определение места самолета по дальностям до двух радиолокационных ориентиров можно приме­нить, когда на экране радиолокатора имеется два опознанных ори­ентира. Обычно этот способ используют только в случаях, если экипаж не уверен в правильности показаний курсовых приборов и не может воспользоваться более простым способом определения места самолета.
Порядок определения места самолета при этом способе сле­дующий:
1.  Выбрать на экране два опознанных ориентира.
2.  Определить наклонные дальности до этих ориентиров и за­метить время.
3.  При необходимости наклонные дальности перевести в гори­зонтальные.
4.  Отложить на карте от опознанных ориентиров горизонталь­ные дальности в виде дуг окружностей (рис. 17.5).
Точка пересечения дальностей даст место самолета к моменту отсчета дальностей.
Контроль пути по направлению и дальности с помощью РПСН-2 по боковым радиолокационным ориентирам. Для контроля пути по направлению и дальности с помощью РПСН-2 необходимо:
Использование РПСН-2

 
1.  До полета  наметить по маршруту боковые характерные радиолокационные
" ориентиры, которые могут быть исполь­зованы для контроля пути.
2.  Провести   от   выбранных  ориенти­ров к ЛЗП линии траверзов, измерить и  записать на карте расстояния по линии траверзов (рис. 17.6).
3.  В   полете, когда   необходимо   проконтролировать   путь,   от­считать на экране индикатора КУО и НД до намеченного ориен­тира.
4.  Определить угол β как разность КУО — (±УСР).
5.  Рассчитать на НЛ-10М положение самолета по дальности и по направлению (рис. 17-7).
6.  Определить линейное боковое уклонение но формуле
ЛБУ = Sтр — Sл. тр или ЛБУ = Sл. тр — Sтр.
Первой формулой пользуются, когда радиолокационный ориентир находится справа, а второй, когда ориентир слева.
 
Использование РПСН-2
 
Пример. ЗМПУ = 90°; Sтр = 30 км; МКр = 80°; T = 10 ч 40 мин; КУО = 40°; НД = 70 км. Определи,: Sл. тр., SЛЗП и ЛБУ.
Решение. 1. β = КУО — (± УСР) = 40° — ( + 10°) =30°.
2.   Определяем  на   НЛ-10М Sл. тр   и SЛЗП . Получаем: Sл. тр =35 км; SЛЗП = 60 км.
3.  ЛБУ = Sтр — Sл. тр = 30 — 35 = — 5 км.

Распечатать ..

 
Другие новости по теме:

  • Использование РПСН-2 в режиме «Скорость»
  • Особенности использования самолетной радиолокационной станции РПСН-3
  • Самолетовождение с использованием самолетной радиолокационной станции р ...
  • Использование РПСН-2 в режимах «Снос» и «Снос точно»
  • Порядок ведения визуальной ориентировки и точность определения места самоле ...


  • Rambler's Top100
    © 2009