Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_443.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337 Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338 Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339 Использование РПСН-2 в режиме «Препятствие» » Летательные аппараты - Авиационный моделизм и самолетовождение
www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование радиолокации и навигации » Использование РПСН-2 в режиме «Препятствие»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
return_links(); ?>
return_block_links(); ?>
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Двухмоторный электролет
Двухмоторный электролет был создан в результате даль­нейшего  развития  моделей с электродвигателем. Демон­страционные полеты такого аппарата вызывают большой интерес в любой аудитории, будь то школа или пионерский лагерь; они хорошо смотрятся на слетах, фестивалях и празд­никах. Двухмоторная схема модели позволяет повысить ее энерговооруженность, добить­ся надежности полета на от­крытом воздухе.

» Списывание девиации магнитных компасов
Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвест­на, практически нельзя, так как она может достигать больших зна­чений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, элек ...

» Ромбический коробчатый змей
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами. Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые т ...

» Спарка-тренажер
Как из­вестно, свой самый первый полет курсант выполняет не один, а вдвоем с инструктором на самолете с двойным управлением. Сначала управ­ляет инструктор, а обучаемый лишь слегка придерживает ручку и запоминает необхо­димые для полета манипуля­ции. И лишь на следующем этапе инициатива переходит к ученику. Однако инструктор и тут всегда начеку — в кри­тической ситуации он всегда может вмешат ...

» Простейший вертолет — «муха»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

» Ошибки барометрических высотомеров
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый ...

» Постройка шара-монгольфье­ра
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы. Постройка шара-монгольфье­ра. Работу начинают с ...

» Девиация компаса и вариация
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к зап ...

» Моменты на головке ротора
На головке ротора при установившемся режиме полета помимо сил T, H и S будут моменты относительно осей zz u хх (оси проходят через центр втулки), так как при наличии расстояния е (фиг. 84) равнодействующая аэродинамических сил ротора не проходит через центр втулки.  

» Поправка на угол схождения меридианов
Как известно, на картах конической и поликонической проек­ций, применяемых для целей радиопеленгации, меридианы непа­раллельны между собой. Поправкой σ на схождение меридианов назы­вается угол, заключенный между северным направлением истин­ного меридиана радиостанции и северным направлением истинного меридиана самолета, перенесенного в точку радиостанции парал­лельно самому себе (рис. 12.7). ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Расчет истинной воздушной скорости по узкой стрелке КУС
Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высо­той в соответствии со стандартной атмосферой. Поэтому при тем­пературе на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скоро ...

» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элеме ...

» Резиномоторная модель са­молета класса В-1
Резиномоторная модель са­молета класса В-1 (рис. 31) может рассматриваться как шаг к спортивному совер­шенствованию в категории сво-боднолетающих моделей.

» Авиационный моделизм
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно. Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамо ...

» Магнитные поля, действующие на картушку компаса, установленного на самолете
На картушку магнитного компаса, установленного на самолете, действуют следующие поля: 1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану); 2)  постоянное магнитное поле самолета; 3)   переменное магнитное поле самолета; 4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

» Игры и соревнования. Воздушный «почтальон»
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема. Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх ...

» Списывание девиации на самолетах с ГТД
На самолетах с ГТД датчики дистанционных компасов установ­лены в местах, где, как показали результаты исследований, дейст­вие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА из­дал специальное указание, согласно которому:

» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Устройство управляемой ракеты
Несмотря на большое раз­нообразие, все ракеты имеют много общего в своем устрой­стве. Основными частями управляемой ракеты являются полезный груз, корпус, двига­тель, бортовая аппаратура си­стемы управления, органы управления и источники энер­гии. Полезный груз — объект для проведения иссле­дований или других работ, размещается в головном от­секе и прикрывается головным обтекателем. Корпус р ...

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Списывание радиодевиации - Причины радиодевиации и ее характер
Работа радиокомпаса основана на использовании направленной характеристики приема радиоволн рамочной антенной. С помощью такой антенны (рамки) определяется направление, с которого приходят радиоволны к самолету. Однако не всегда рамка радиоком­паса устанавливается в направлении на радиостанцию. Обычно при пеленговании наземных радиостанций рамка радиокомпаса устанавливается в направлении, которое о ...

» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Основные географические понятия - Форма и размеры Земли
На основании многочисленных геодезических измерений уста­новлено, что Земля представляет собой небесное тело, не имеющее простой геометрической формы. За геометрическое тело, близкое к истинной форме Земли, принят геоид. Геоидом называется геометрическое тело, ограниченное ус­ловной (уровенной) поверхностью, которая является продолжени­ем поверхности океанов в их спокойном состоянии. Геоид не имее ...

» Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, ре ...
Навигационная система «Трасса» предназначена для непре­рывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямо­угольной системе координат (дальность и линейное боковое ук­лонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является изме­ритель путевой скорости и угла сноса, исп ...

» Выход на линию заданного пути
Выход на ЛЗП — важный этап работы экипажа. Он заключа­ется в определении такого курса следования, при выдерживании которого фактический путевой угол был бы равен заданному пу­тевому углу или отличался от него не более чем на 2°. В зависимости от навигационной обстановки курс следования может определяться одним из следующих способов: 1)   по прогностическому или шаропилотному ветру; 2)   по в ...

» Сущность кодовых выражений ЩГЕ и ЩТФ
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

» Ориентирование карты по странам света
Ориентировать карту по странам света — это значит располо­жить ее так, чтобы северные направления истинных меридианов карты были направлены на север. В практике самолетовождения ориентирование карты по странам света осуществляют по компасу или земным ориентирам.

» Сущность устранения (компенсации) полукруговой девиации
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Использование РПСН-2 в режиме «Препятствие»
Самолетовождение » Использование радиолокации и навигации  |   Просмотров: 9543  
 
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности.
Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, которая управляется при помощи ручки «Изо — Эхо». Эта си­стема обеспечивает изменение уровня подавления приходящих сиг­налов от грозовой зоны. Вращая ручку «Изо—Эхо», можно изме­нить уровень подавления сигналов так, что сигналы, отраженные от зон с большой плотностью выпадающих осадков, будут подав­ляться. В результате такие зоны на экране индикатора будут за­темнены и расположены внутри засвеченных областей, соответст­вующих областям с меньшей плотностью выпадающих осадков. По наличию темных провалов в отражениях от гроз определяют наи­более опасные зоны, полет через которые является опасным для самолета. Система контурной индикации дает относительную оценку опас­ности участков грозовой зоны. Она позволяет определить, какие участки являются более опасными, а какие менее опасными. Вооб­ще надо учитывать, что грозы во всех стадиях своего развития яв­ляются опасными метеорологическими явлениями.
Для обнаружения зон грозовой деятельности и выявления наи­более опасных участков необходимо:
1.  Переключатель «Режим работы» на пульте пилота поставить в положение «Препятствие» или на пульте штурмана в положение «Горы—Грозы».
2.  Переключатель   «Самолеты — Горы — Грозы»   поставить   в положение «Горы—Грозы».
3.  Переключатель «Канал I — Канал II» при работе с пульта штурмана поставить в положение «Канал I».
4.  Ручку «Наклон  антенны»  поставить в нулевое положение, при этом отключается подсвет шкалы.
5.  Ручка «Изо—Эхо» поставить в положение «Выключено».
6.  Переключатель «Масштаб развертки» перевести в положение, соответствующее дальности до осматриваемой зоны.
7.  При появлении на экране отражений от зон грозовой деятель­ности, которые наблюдаются в виде ярко засвеченных пятен, имею­щих плавные, несколько расплывчатые контуры, выявить наиболее опасные участки этих зон. Для этого необходимо ручку «Изо — Эхо» медленно вращать по ходу   часовой   стрелки   до появления темных провалов на фоне отражений от грозовой зоны (рис. 17.9).
Вначале темные провалы появляются в местах с наибольшей турбулентностью, т. е. в местах с наиболее активной грозовой дея­тельностью. Чем больше величина темных провалов, тем больше турбулентность в грозовой зоне и тем опаснее она для полетов.
8. Одновременно с определением участков, наиболее опасных для полета, определить градиент изменения силы вертикальных то­ков воздуха и выбрать наиболее безопасное направление обхода грозовой зоны.
 
Использование РПСН-2
 
Градиент изменения силы вертикальных токов определяется по ширине засвеченных участков между темными провалами в грозо­вой зоне, которые появляются при вращении ручки «Изо—Эхо». Чем уже засвеченные участки, тем более резко изменяется сила вертикальных токов воздуха с приближением к грозовому очагу и тем опаснее этот участок для полета. Кроме того, резкое возра­стание силы вертикальных токов воздуха будет и в тех местах, где ширина засвеченной части между темными участками внутри гро­зовой зоны и общим темным фоном наименьшая.
Для того чтобы на экране при приближении самолета к грозо­вому очагу вид картины не изменялся, в РПСН-2 применена схе­ма временной автоматической регулировки усиления (ВАРУ), ко­торая с дальности 10—15 км до грозовой зоны обеспечивает по­стоянство величины сигналов на выходе приемника. Эта схема на малых дальностях, где уровень принимаемых сигналов велик, ав­томатически ослабляет их.
Очаги грозовой деятельности должны обнаруживаться заблаго­временно, на расстоянии не менее 100—120 км от самолета. Это позволит экипажу выполнить необходимые расчеты и при­нять решение на обход очагов с грозами или на пролет между ними.
При обнаружении на экране грозовых очагов необходимо:
1.  Определить положение зоны грозы относительно направления полета, для чего отсчитать ее курсовой угол (рис. 17.10).
2.  Определить удаление зоны грозы от самолета в направлении линии полета и в направлении, перпендикулярном к этой   линии. Расстояние в направлении полета определяется по меткам дально­сти, а боковое расстояние рассчитывается по формуле: Sδ=Ssin КУ, которая решается на НЛ-10М (рис. 17,11). Маневр по обходу зон грозы и ливневых осадков, видимых на индикаторе производится на заданной высоте и на  удалении от них не менее 10 км.
 
Использование РПСН-2
 
Обход отдельных гроз следует начинать за 40—60 км с таким расчетом, чтобы са­молет прошел зону грозы на безопасном удалении не менее 10 км. Сторона обхода выбирается с учетом обеспечения безопас­ности полета и согласовывается со службой движения.
Для безопасного обхода грозового очага
рассчитывается угол отворота по формуле: УО = α ±КУ. В этой формуле знак плюс берется, если самолет для обхода грозы раз­вернется в направлении на грозу, знак минус — в направлении от грозы (рис. 17.12).
 
Использование РПСН-2
 
Если очаг грозы расположен слева от нулевой азимутальной черты, то в качестве курсового угла берется его дополнение до 360°.
Угол α. рассчитывается по формуле sin α = Sб.без/S
В практике угол α определяется на НЛ-10М. Для этого тре­угольный индекс шкалы 4 устанавливается на расстояние до гро­зы по шкале 5. Затем против бокового безопасного расстояния, взятого по шкале 5, отсчитывается угол α по шкале 3.
Угол α можно определять также по заранее составленной таб­лице (табл. 17. 1).
Таблица 17. 1
Значение углов α для обхода грозы
 
Sб.без    Угол α , град. при S до грозы      
                30 км    40 км    50 км    60 км    70 км      
10            20         15         12         10         9      
20            42         30         24         20         17     
 
Пример. I.  МК=70°;    S=60 км;  КУ = 5°;  Sб.без = 10 км;     обход   грозы влево. Определить  угол α, УО и МК. обхода.
Решение. 1. Определяем на НЛ-10М угол α. Получаем: α =10°.
2. Рассчитываем угол отворота: УО = α —КУ=10°— 5°=5°.
3. Находим МК обхода: МКобх = МК—УО=70°—5°=65°.
Пример 2. МК=200°; S=40 км; КУ=10°; Sб.без — 10 км; обход грозы вправо. Определить угол α, УО и МК обхода.
Решение. 1. Определяем на НЛ-10М угол α. Получаем α =15°.
2.  Рассчитать угол отворота: УО= α +КУ= 15°+10°=25°.
3.  Находим МК обхода. МКобх = МК+УО=200°+25°=225°.
Определив угол отворота, необходимо довер­нуть самолет для безопасного пролета грозового очага, а после его обхода развернуть самолет на угол выхода и снова выйти на ЛЗП.
Если очаг грозы расположен на линии курса (рис. 17.13), то угол отворота УО = α ± УГ, где УГ — угол грозы.
 
Использование РПСН-2
 
Пример. МК=290°; S = 45км; УГ=10° слева; S б.без=  10 км; обход грозы влево. Определить угол α, УО и МК обхода.
Решение.   1. Определяем  на НЛ-10М угол а.
Получаем  а =13°.
2.   Рассчитываем   угол  отворота:   УО = α +УГ= 13° + 10°==230.
3.    Находим   МК   обхода:   МКобх=МК—УО = 290°—23°=267°.
Пересекать фронтальную облачность с отдельными грозовыми очагами разрешается только в том месте, где расстояние между ними составляет не менее 50 км. Это расстояние определяют на НЛ-10М. Для этого треугольный индекс шкалы 4 устанавливают на дальность до грозовых очагов по шкале 5. Затем против угла между грозовыми очагами, взятого по шкале 3, отсчитывают рас­стояние между очагами по шкале 5.
Пример. МК=150°, расстояние до грозовых очагов S = 120 км; угол между грозовыми очагами α = 25°. Определить расстояние между ними и возможность пролета.
Решение.  1.    Определяем   на   НЛ-10М    расстояние   между    грозовыми очагами. Получаем Sб = 51 км.
2. Так как расстояние между грозовыми очагами более 50 км, пролет меж­ду ними возможен.
Если нельзя ни обойти справа (слева), ни пересечь в каком-либо месте грозовой фронт, принимают решение на пролет его сверху или по согласованию со службой движения на возвраще­ние либо на полет на запасный аэродром.
Для решения вопроса о возможности пролета грозового фрон­та сверху необходимо:
1.  Определить по экрану индикатора     дальность   до грозового фронта.
2.  Ручкой   «Наклон    ан­тенны»     поднять     антенну вверх до  пропадания отра­жений от гроз на экране ин­дикатора  (рис.  17.14).
3.  Отсчитать угол подъе­ма антенны по шкале и оп­ределить угловое   превышение  грозового фронта, по формуле:   α = УП — 1,5°,
где УП — угол подъема антенны; 1,5°—половина ширины луча антенны.
4 Определить линейное превышение грозового фронта относи­тельно высоты полета самолета по формуле: ΔН = Stgα. Она ре­шается на НЛ-10М. Для этого необходимо треугольный индекс шкалы 4 установить на расстояние до грозового фронта по шка­ле 5. Затем против углового превышения грозового фронта, взя­того по шкале 4, отсчитать линейное превышение по шкале 5.
5. Определить высоту пролета грозы с учетом безопасного пре­вышения не менее 500 м над верхней границей облаков. Набор высоты производится на курсе следования или на специальном маневре.
 
Использование РПСН-2
 
Пример. Нэш=5700 м; S до грозы=140 км; УП=2°; Vи=400 км/ч. Опре­делить данные для пролета грозового фронта сверху на попутном эшелоне. Решение. 1. α=УП—1,5°=2°—1,5°=0,5°.
2.  Определяем на НЛ-10М   линейное превышение    грозового фронта.    По­лучаем ΔН =1230 м.
3.  Определяем высоту попутного эшелона пролета грозы: Нэш пролета = 7800 м.
4.  Находим высоту набора:
Ннаб = Нэш пролета — Нэш = 7800 — 5700 = 3100 м.
5.  Рассчитываем на НЛ-10М время набора     высоты и вертикальную ско­рость. Получаем: tнаб =21 мин; Vв = 1,7 м/сек.
По указанию службы движения или по решению командира корабля в целях достижения большей безопасности пролета гро­зы сверху окончание набора высоты попутного эшелона может быть намечено с упреждением на 20—30 км до грозы. В этом случае при расчете времени набора высоты и вертикальной ско­рости необходимо учитывать величину намеченного упреждения.
Использование РПСН-2 в режиме «Препятствие» при полете в горных районах. РПСН-2 обеспечивает обнаружение горных вершин и определение безопасного превышения над ними.
При подходе к горному району необходимо:
1.   Переключатель «Режим работы» на пульте пилота устано­вить в положение «Препятствие», на пульте штурмана — в поло­жение «Горы—Грозы».
2.  Переключатель   «Самолеты — Горы — Грозы»   поставить     в положение «Горы — Грозы».
3.  Переключатель «Масштаб развертки» на пультах пилота и штурмана установить в положения 120 и 180 км соответственно.
4.  Переключатель «Канал I — Канал II» на пульте штурмана установить в положение «Канал I».
5. Проверить, что  ручка «Изо—Эхо» находится в положении «Выключено».
6. Поднять антенну вверх на 2—3° и убедиться, что на экранах индикаторов пилота и штурмана нет отражений от земной поверхности.
 Если на экранах остались какие-либо отражения, то по характеру светящихся отметок проверить, не являются ли они отражениями от зон грозовой деятельности.
7. Поставить антенну в нулевое положение.
8.  При подходе к горной вершине на расстояние 60 км пере­вести   переключатель   «Масштаб   развертки»   в положение 50 км.
9.   Убедиться, что самолет имеет безопасное превышение над ближайшими горными вершинами не менее 900±300 м, для чего сравнить  абсолютную высоту  полета  самолета   (высоту  относи­тельно уровня моря) с высотой горной вершины или использовать метод круга безопасности.
В режиме «Горы — Грозы» впереди лежащее пространство облучается узким лучом. Земная поверхность, находящаяся непо­средственно под самолетом и на некотором расстоянии впереди от него, в этом случае на экране индикатора не изображается.
При безопасном превышении над горными вершинами 900±300 м радиус сектора на экране, в котором не изображается земная поверхность, равен 10—15 км. Эту дальность принято называть условным кругом безопасности. Определе­ние превышения полета над горными вершинами методом круга безопасности можно пояснить на рис. 17.15.
 
Использование РПСН-2
 
При подходе к горной вершине отраженный от нее сигнал на экране индикатора будет постепенно приближаться к условному кругу безопасности. При полете самолета на безопасном превыше­нии 900±300 м и приближении его к горной вершине на расстоя­ние 10—15 км отраженный сигнал на экране индикатора достиг­нет круга безопасности. При дальнейшем приближении самолета к горной вершине отраженный сигнал на экране исчезает.
Таким образом, для определения наличия безопасного пре­вышения над горными вершинами методом круга безопасности не­обходимо проследить за движением отметки отраженного сигна­ла на экране индикатора. Изменение яркости и размера отметки при подходе самолета к горной вершине и пропадание ее на эк­ране на дальностях 10—15 км и больше свидетельствует о том, что самолет имеет безопасное превышение над горной вершиной. Если отраженный сигнал при приближении к кругу безопасности не изменяет своего размера и яркости и после пересечения круга безопасности продолжает наблюдаться на экране, то это значит, что полет происходит ниже безопасной высоты. В этом случае необходимо немедленно выполнить маневр для обхода горной вер­шины.
Использование РПСН-2 в режиме «Препятствие» для обнару­жения самолетов. РПСН-2 обеспечивает предупреждение экипа­жа от столкновений с другими самолетами, оборудованными (ак­тивный метод) или не оборудованными ответчиками (пассивный метод). Ответные сигналы ответчиков, установленных на самоле­тах, наблюдаются на экране II канала индикатора пилота, а так­же на экране индикатора штурмана при установке переключате­ля «Канал I — Канал II» на пульте штурмана в положение «Ка­нал II». Ответные сигналы ответчиков и отраженные сигналы от самолетов видны на экранах индикаторов в виде ярких точек. Отметки от самолетов, обнаруженных пассивным методом при высоте полета самолета до 5000 м, могут не просматриваться на фоне отражений от земной поверхности, горных вершин и гро­зовых фронтов.
Наблюдение сигналов ответчика на экране II канала преду­смотрено для обеспечения четкой индикации сигналов от наибо­лее опасного препятствия — самолета, которые в этом случае не маскируются отражениями от земной поверхности и грозовых фронтов. Дальность обнаружения самолетов с ответчиками состав­ляет 50—60 км, а без ответчиков — 30 км.
На II канале имеется световая сигнализация, которая привле­кает внимание экипажа при появлении в зоне обзора станции самолета, оборудованного ответчиком.
Для работы станции в режиме «Препятствие» для обнаруже­ния самолетов необходимо:
1.   Переключатель «Режим работы» на пульте пилота устано­вить в положение «Препятствие», на пульте штурмана — в по­ложение «Самолеты».
2.   На пульте пилота переключатель «Самолеты — Горы — Грозы» поставить в положение «Самолеты».  При этом одновре­менно отключается индикаторная лампочка, сигнализирующая о ра­боте ВАРУ в режиме «Горы — Грозы».
3.   Переключатель  «Масштаб  развертки»  на  пультах пилота и штурмана установить в положение 50 км.
4.  Переключатель «Канал I — Канал II» на пульте штурмана установить в положение «Канал II».
5.  Установить антенну в нулевое положение.
6.   При обнаружении на экране отметки от самолета  опреде­лить степень опасности столкновения.
Определение степени опасности столкновения осуществляется визуальным наблюдением за перемещением отметки самолета по экрану индикатора (рис. 17.16). Потенциально опасные само­леты наблюдаются на экране индикатора под одним и тем же курсовым углом и их перемещение происходит к точке пересе­чения радиальных линий.
Отметки тех самолетов, с которыми возможность столкновений исключена, наблюдаются на экране под разными курсовыми углами и перемещаются по направлению, пересекающему радиальные линии.

Использование РПСН-2
 
В случае если яркостная отмет­ка от самолета перемещается к центру развертки, необходимо от­вернуть свой самолет в сторону. Направление отворота определяет­ся на основании общей картины на экране индикатора.
В РПСН-2 на пульте пилота име­ется положение переключателя ре­жима работ «Выключена стабили­зация тангажа», которое использу­ется для просмотра впереди лежа­щего пространства при наборе вы­соты и снижении. При установке пе­реключателя режима работ в это положение сигнал продольного кре­на, поступающий от ЦГВ самолета к антенне станции, отключается и антенна автоматически устанавливается по направлению продольной оси самолета, что обеспечивает про­смотр пространства в передней полусфере.

Распечатать ..

 
Другие новости по теме:

  • Особенности использования самолетной радиолокационной станции РПСН-3
  • Самолетовождение с использованием самолетной радиолокационной станции р ...
  • Использование РПСН-2 в режимах «Обзор» и «Дальний обзор»
  • Особенности самолетовождения в условиях грозовой деятельности
  • Использование РПСН-2 в режиме «Скорость»


  • Rambler's Top100
    © 2009
    Warning: Unknown: open(/var/lib/php/session/sess_6kaj0a1lnccd8k3qbtdpeggm71, O_RDWR) failed: Permission denied (13) in Unknown on line 0 Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0