www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование радиолокации и навигации » Использование РПСН-2 в режиме «Препятствие»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и ука­затели: 1.  Щиток управления системой. 2.  Указатель угла сноса и путевой скорости. 3.  Задатчик угла карты, 4.  Счетчик координат. 5.  Переключатель «ДИСС—АНУ». 6.  Переключатель «Счетчик» («Вкл.—Выкл.»). 7.  Задатчик ветра.

» Использование РСБН-2 для захода на посадку
РСБН-2 при заходе на посадку позволяет: 1.  Производить «вписывание» самолета  в  установленную для данного аэродрома схему захода на посадку. 2.  Осуществлять контроль  полета по  установленной   схеме. 3.  Выводить самолет в зону курсового радиомаяка.

» Особенности самолетовождения над безориентирной местностью
Условия самолетовождения    над    безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

» Кордовая модель самолета «Юниор»
Кордовая модель самолета «Юниор» (рис. 32) разрабо­тана для первоначального обу­чения пилотированию моде­лей данной категории. Прежде чем приступить к изготовлению любой модели самолета, и к этой конкретно, надо вычер­тить ее рабочий чертеж. Работу над моделью можно начать с изготовления кры­ла — наиболее сложной дета­ли данного летательного аппа­рата. Крыло модели «Юниор» со­стоит из 10 нер ...

» Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и задачи, решаемые с его помощь ...
Одной из важнейших задач, выполняемых экипажем самоле­та в полете, является сохранение ориентировки. Ее решение до­стигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях ви­зуальную ориентировку не всегда можно применить, а определе­ние места самолета с помощью радиотехнич ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Сокращенные обозначения и условные знаки, принятые в самолетовождении
Точки и линииМС — место   самолета ИПМ — исходный   пункт   маршрута ППМ — поворотный   пункт   маршрута КО — контрольный   ориентир КЭ — контрольный   этап ЛЗП — линия   заданного   пути ЛФП — линия фактического пути АЛП — астрономическая   линия   положения РНТ — радионавигационная   точка ОПРС — отдельная   приводная   радиостанция РСБ ...

» Собственная устойчивость автожира
Благодаря шарнирному креплению лопастей ротора автожиру присуща собственная статическая устойчивость в форме маятниковой устойчивости, проявляющаяся в особенности при крутых спусках. Действительно, результирующая аэродинамических сил всегда проходит через втулку ротора, которую можно рассматривать как точку привеса для всего автожира. Центр тяжести автожира лежит под втулкой, отстоя от нее по высо ...

» Определение и устранение девиации гироиндукционного компаса ГИК-1
При устранении девиации гироиндукционного компаса ГИК-1 необходимо: 1. Установить регулировочные винты коррекционного механизма в их среднее положение. При выпуске компаса с завода регулировочные винты лекаль­ного устройства устанавливаются в среднее положение, при кото­ром коррекционный механизм обеспечивает устранение остаточной девиации в пределах ±6°. В процессе предыдущего устранения девиации ...

» Конические проекции
Конические проекции получаются в результате переноса поверх­ности Земли на боковую поверхность конуса, касательного к одной из параллелей или секущего земной шар по двум заданным па­раллелям. Затем конус разрезается по образующей и разворачи­вается на плоскость. Конические проекции в зависимости от распо­ложения оси конуса относительно оси вращения Земли могут быть нормальные, поперечные и косые. ...

» Предполетная проверка КС-6
Для проверки КС в режиме «МК» необходимо: 1.  Включить курсовую систему. 2.  Установить на УШ и КМ-4 магнитное склонение, равное ну­лю. 3.  Установить переключатель режимов работы на пульте управ­ления   в положение   «МК». 4. Установить переключатель    «Осн. — Зап.»     в    положение «Осн.». 5.  Через 5 мин после включения КС нажать кнопку быстрого согласования и согласовать указатели, ко ...

» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем
Радиотехнические средства среди других средств самолетово­ждения занимают одно из важнейших мест и находят самое ши­рокое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самоле­товождение. Радиотехнические средства самолетовождения по месту рас­положения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: при­в ...

» Ортодромия и локсодромия
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных  линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. ...

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Способы измерения высоты полета
Основными способами измерения высоты полета являются ба­рометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно из­меняющегося с высотой. Барометрический высотомер представля­ет собой обыкновенный барометр, у которого вместо шкалы дав­лений поставлена шкала высот. Такой высотомер определяет вы­соту полета самолета к ...

» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира
Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...

» Контроль и исправление пути при полете от радиолокатора и на радиолокатор
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осу­ществляется в следующем порядке: 1.  Запросить у диспетчера место самолета. 2.  Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм);    БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между мериди ...

» Точность посадки
Цель этих соревнований — посадить модель в заранее обозначенное место. На расстоянии 5—6 м от стартовой линии размечают «аэродром». Это может быть круг диаметром около 1 м или лист газеты. Каждый участник после тренировочных запусков совершает зачетный полет Если после первого тура у нескольких участников модели приземлились точно на «аэродром», для определения победителя линию старта ...

» Простейший вертолет — «муха»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

» Помещение для занятий авиамоделизмом
Для работы авиамодельного кружка пионерского лагеря необходимо светлое помеще­ние — мастерская площадью 40—45 м2 для размещения 15—20 рабочих мест. Единой схемы организации мастерской не существует, все опреде­ляется возможностями пионер­лагеря. А они не такие уж и большие. Поэтому на прак­тике площадь мастерской обыч­но не превышает 30 м2. Это, конечно, несколько затрудняет рабо ...

» Азимутальные проекции
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проек ...

» Состав оборудования системы «Трасса» и принцип работы навигационного вычислителя
В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1.  Доплеровский   измеритель  путевой   скорости   и   угла сноса (ДИСС). 2.  Автоматическое  навигационное  устройство   (АНУ);   его на­зывают также навигационным вычислителем. 3.  Датчик курса. 4.  Датчик воздушной скорости. 5.  Задатчик угла карты. 6.  Указатель угла сноса и путевой скорости. 7. ...

» Использование РПСН-2 в режиме «Скорость»
Режим «Скорость» предназначен для определения путевой ско­рости самолета. Она определяется по времени движения ориенти­ра между метками дальности на экране индикатора. В РПСН-2 в режиме «Скорость» автоматически включается масштаб развертки 50 км и регулируемая задержка запуска раз­вертки в диапазоне 60—150 км. Это позволяет выбирать ориенти­ры для определения путевой скорости на достаточно б ...

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Аэродинамический расчет автожира
Аэродинамический расчет автожира делается с целью определения его летных характеристик, как то:1)    горизонтальных скоростей - максимальных и минимальных, без снижения;2)    потолка;3)    скороподъемности;4)    скорости по траектории при крутом планировании.

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Определение путевой скорости самолета
При полете самолета от радиолокатора и на радиолокатор пу­тевая скорость определяется в следующем порядке: 1.  Запросить у диспетчера место самолета и заметить время. 2.  Через 7—10 мин полета снова запросить место самолета и заметить время. 3.  Определить пройденный самолетом путь как разность между полученными дальностями:   Sпр =Д2—Д1 или Sпр=Д1—Д2 4.  По пройденному расстояни ...

» Поперечная балансировка автожира
Если ось ротора и ц. т. автожира лежат в плоскости симметрии автожира (фиг. 92), то при установившемся прямолинейном полете на автожир буду действовать следующие крепящие моменты: 1)    момент на головке ротора согласно уравнению (78);   2)    момент от поперечной силы, равный:   3)    при моторном полете реактивный момент пропеллера, равный:  

» Определение остаточной радиодевиации и составление графика радиодевиации
Остаточная радиодевиация определяется с целью обнаружения ошибок и неточностей, допущенных в процессе выявления и ком­пенсации радиодевиации. Для определения остаточной радиодевиации самолет последо­вательно устанавливается на 24 ОРК, на каждом ОРК определяет­ся КУР и вычисляется радиодевиация, которая записывается в протокол. Радиодевиация считается скомпенсированной, если на КУР = 0° она равна н ...

» Определение момента пролета радиостанции или ее траверза
Полет на радиостанцию заканчивается определением момента ее пролета. Как правило, этот момент необходимо ожидать. О приближении самолета к радиостанции можно су­дить по следующим призна­кам: а)   истекает       расчетное время прибытия на РНТ; б)   увеличивается   чувст­вительность    радиокомпаса, что   сопровождается   откло­нением стрелки   индикатора настройки вправо.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Использование РПСН-2 в режиме «Препятствие»
Самолетовождение » Использование радиолокации и навигации  |   Просмотров: 8902  
 
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности.
Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, которая управляется при помощи ручки «Изо — Эхо». Эта си­стема обеспечивает изменение уровня подавления приходящих сиг­налов от грозовой зоны. Вращая ручку «Изо—Эхо», можно изме­нить уровень подавления сигналов так, что сигналы, отраженные от зон с большой плотностью выпадающих осадков, будут подав­ляться. В результате такие зоны на экране индикатора будут за­темнены и расположены внутри засвеченных областей, соответст­вующих областям с меньшей плотностью выпадающих осадков. По наличию темных провалов в отражениях от гроз определяют наи­более опасные зоны, полет через которые является опасным для самолета. Система контурной индикации дает относительную оценку опас­ности участков грозовой зоны. Она позволяет определить, какие участки являются более опасными, а какие менее опасными. Вооб­ще надо учитывать, что грозы во всех стадиях своего развития яв­ляются опасными метеорологическими явлениями.
Для обнаружения зон грозовой деятельности и выявления наи­более опасных участков необходимо:
1.  Переключатель «Режим работы» на пульте пилота поставить в положение «Препятствие» или на пульте штурмана в положение «Горы—Грозы».
2.  Переключатель   «Самолеты — Горы — Грозы»   поставить   в положение «Горы—Грозы».
3.  Переключатель «Канал I — Канал II» при работе с пульта штурмана поставить в положение «Канал I».
4.  Ручку «Наклон  антенны»  поставить в нулевое положение, при этом отключается подсвет шкалы.
5.  Ручка «Изо—Эхо» поставить в положение «Выключено».
6.  Переключатель «Масштаб развертки» перевести в положение, соответствующее дальности до осматриваемой зоны.
7.  При появлении на экране отражений от зон грозовой деятель­ности, которые наблюдаются в виде ярко засвеченных пятен, имею­щих плавные, несколько расплывчатые контуры, выявить наиболее опасные участки этих зон. Для этого необходимо ручку «Изо — Эхо» медленно вращать по ходу   часовой   стрелки   до появления темных провалов на фоне отражений от грозовой зоны (рис. 17.9).
Вначале темные провалы появляются в местах с наибольшей турбулентностью, т. е. в местах с наиболее активной грозовой дея­тельностью. Чем больше величина темных провалов, тем больше турбулентность в грозовой зоне и тем опаснее она для полетов.
8. Одновременно с определением участков, наиболее опасных для полета, определить градиент изменения силы вертикальных то­ков воздуха и выбрать наиболее безопасное направление обхода грозовой зоны.
 
Использование РПСН-2
 
Градиент изменения силы вертикальных токов определяется по ширине засвеченных участков между темными провалами в грозо­вой зоне, которые появляются при вращении ручки «Изо—Эхо». Чем уже засвеченные участки, тем более резко изменяется сила вертикальных токов воздуха с приближением к грозовому очагу и тем опаснее этот участок для полета. Кроме того, резкое возра­стание силы вертикальных токов воздуха будет и в тех местах, где ширина засвеченной части между темными участками внутри гро­зовой зоны и общим темным фоном наименьшая.
Для того чтобы на экране при приближении самолета к грозо­вому очагу вид картины не изменялся, в РПСН-2 применена схе­ма временной автоматической регулировки усиления (ВАРУ), ко­торая с дальности 10—15 км до грозовой зоны обеспечивает по­стоянство величины сигналов на выходе приемника. Эта схема на малых дальностях, где уровень принимаемых сигналов велик, ав­томатически ослабляет их.
Очаги грозовой деятельности должны обнаруживаться заблаго­временно, на расстоянии не менее 100—120 км от самолета. Это позволит экипажу выполнить необходимые расчеты и при­нять решение на обход очагов с грозами или на пролет между ними.
При обнаружении на экране грозовых очагов необходимо:
1.  Определить положение зоны грозы относительно направления полета, для чего отсчитать ее курсовой угол (рис. 17.10).
2.  Определить удаление зоны грозы от самолета в направлении линии полета и в направлении, перпендикулярном к этой   линии. Расстояние в направлении полета определяется по меткам дально­сти, а боковое расстояние рассчитывается по формуле: Sδ=Ssin КУ, которая решается на НЛ-10М (рис. 17,11). Маневр по обходу зон грозы и ливневых осадков, видимых на индикаторе производится на заданной высоте и на  удалении от них не менее 10 км.
 
Использование РПСН-2
 
Обход отдельных гроз следует начинать за 40—60 км с таким расчетом, чтобы са­молет прошел зону грозы на безопасном удалении не менее 10 км. Сторона обхода выбирается с учетом обеспечения безопас­ности полета и согласовывается со службой движения.
Для безопасного обхода грозового очага
рассчитывается угол отворота по формуле: УО = α ±КУ. В этой формуле знак плюс берется, если самолет для обхода грозы раз­вернется в направлении на грозу, знак минус — в направлении от грозы (рис. 17.12).
 
Использование РПСН-2
 
Если очаг грозы расположен слева от нулевой азимутальной черты, то в качестве курсового угла берется его дополнение до 360°.
Угол α. рассчитывается по формуле sin α = Sб.без/S
В практике угол α определяется на НЛ-10М. Для этого тре­угольный индекс шкалы 4 устанавливается на расстояние до гро­зы по шкале 5. Затем против бокового безопасного расстояния, взятого по шкале 5, отсчитывается угол α по шкале 3.
Угол α можно определять также по заранее составленной таб­лице (табл. 17. 1).
Таблица 17. 1
Значение углов α для обхода грозы
 
Sб.без    Угол α , град. при S до грозы      
                30 км    40 км    50 км    60 км    70 км      
10            20         15         12         10         9      
20            42         30         24         20         17     
 
Пример. I.  МК=70°;    S=60 км;  КУ = 5°;  Sб.без = 10 км;     обход   грозы влево. Определить  угол α, УО и МК. обхода.
Решение. 1. Определяем на НЛ-10М угол α. Получаем: α =10°.
2. Рассчитываем угол отворота: УО = α —КУ=10°— 5°=5°.
3. Находим МК обхода: МКобх = МК—УО=70°—5°=65°.
Пример 2. МК=200°; S=40 км; КУ=10°; Sб.без — 10 км; обход грозы вправо. Определить угол α, УО и МК обхода.
Решение. 1. Определяем на НЛ-10М угол α. Получаем α =15°.
2.  Рассчитать угол отворота: УО= α +КУ= 15°+10°=25°.
3.  Находим МК обхода. МКобх = МК+УО=200°+25°=225°.
Определив угол отворота, необходимо довер­нуть самолет для безопасного пролета грозового очага, а после его обхода развернуть самолет на угол выхода и снова выйти на ЛЗП.
Если очаг грозы расположен на линии курса (рис. 17.13), то угол отворота УО = α ± УГ, где УГ — угол грозы.
 
Использование РПСН-2
 
Пример. МК=290°; S = 45км; УГ=10° слева; S б.без=  10 км; обход грозы влево. Определить угол α, УО и МК обхода.
Решение.   1. Определяем  на НЛ-10М угол а.
Получаем  а =13°.
2.   Рассчитываем   угол  отворота:   УО = α +УГ= 13° + 10°==230.
3.    Находим   МК   обхода:   МКобх=МК—УО = 290°—23°=267°.
Пересекать фронтальную облачность с отдельными грозовыми очагами разрешается только в том месте, где расстояние между ними составляет не менее 50 км. Это расстояние определяют на НЛ-10М. Для этого треугольный индекс шкалы 4 устанавливают на дальность до грозовых очагов по шкале 5. Затем против угла между грозовыми очагами, взятого по шкале 3, отсчитывают рас­стояние между очагами по шкале 5.
Пример. МК=150°, расстояние до грозовых очагов S = 120 км; угол между грозовыми очагами α = 25°. Определить расстояние между ними и возможность пролета.
Решение.  1.    Определяем   на   НЛ-10М    расстояние   между    грозовыми очагами. Получаем Sб = 51 км.
2. Так как расстояние между грозовыми очагами более 50 км, пролет меж­ду ними возможен.
Если нельзя ни обойти справа (слева), ни пересечь в каком-либо месте грозовой фронт, принимают решение на пролет его сверху или по согласованию со службой движения на возвраще­ние либо на полет на запасный аэродром.
Для решения вопроса о возможности пролета грозового фрон­та сверху необходимо:
1.  Определить по экрану индикатора     дальность   до грозового фронта.
2.  Ручкой   «Наклон    ан­тенны»     поднять     антенну вверх до  пропадания отра­жений от гроз на экране ин­дикатора  (рис.  17.14).
3.  Отсчитать угол подъе­ма антенны по шкале и оп­ределить угловое   превышение  грозового фронта, по формуле:   α = УП — 1,5°,
где УП — угол подъема антенны; 1,5°—половина ширины луча антенны.
4 Определить линейное превышение грозового фронта относи­тельно высоты полета самолета по формуле: ΔН = Stgα. Она ре­шается на НЛ-10М. Для этого необходимо треугольный индекс шкалы 4 установить на расстояние до грозового фронта по шка­ле 5. Затем против углового превышения грозового фронта, взя­того по шкале 4, отсчитать линейное превышение по шкале 5.
5. Определить высоту пролета грозы с учетом безопасного пре­вышения не менее 500 м над верхней границей облаков. Набор высоты производится на курсе следования или на специальном маневре.
 
Использование РПСН-2
 
Пример. Нэш=5700 м; S до грозы=140 км; УП=2°; Vи=400 км/ч. Опре­делить данные для пролета грозового фронта сверху на попутном эшелоне. Решение. 1. α=УП—1,5°=2°—1,5°=0,5°.
2.  Определяем на НЛ-10М   линейное превышение    грозового фронта.    По­лучаем ΔН =1230 м.
3.  Определяем высоту попутного эшелона пролета грозы: Нэш пролета = 7800 м.
4.  Находим высоту набора:
Ннаб = Нэш пролета — Нэш = 7800 — 5700 = 3100 м.
5.  Рассчитываем на НЛ-10М время набора     высоты и вертикальную ско­рость. Получаем: tнаб =21 мин; Vв = 1,7 м/сек.
По указанию службы движения или по решению командира корабля в целях достижения большей безопасности пролета гро­зы сверху окончание набора высоты попутного эшелона может быть намечено с упреждением на 20—30 км до грозы. В этом случае при расчете времени набора высоты и вертикальной ско­рости необходимо учитывать величину намеченного упреждения.
Использование РПСН-2 в режиме «Препятствие» при полете в горных районах. РПСН-2 обеспечивает обнаружение горных вершин и определение безопасного превышения над ними.
При подходе к горному району необходимо:
1.   Переключатель «Режим работы» на пульте пилота устано­вить в положение «Препятствие», на пульте штурмана — в поло­жение «Горы—Грозы».
2.  Переключатель   «Самолеты — Горы — Грозы»   поставить     в положение «Горы — Грозы».
3.  Переключатель «Масштаб развертки» на пультах пилота и штурмана установить в положения 120 и 180 км соответственно.
4.  Переключатель «Канал I — Канал II» на пульте штурмана установить в положение «Канал I».
5. Проверить, что  ручка «Изо—Эхо» находится в положении «Выключено».
6. Поднять антенну вверх на 2—3° и убедиться, что на экранах индикаторов пилота и штурмана нет отражений от земной поверхности.
 Если на экранах остались какие-либо отражения, то по характеру светящихся отметок проверить, не являются ли они отражениями от зон грозовой деятельности.
7. Поставить антенну в нулевое положение.
8.  При подходе к горной вершине на расстояние 60 км пере­вести   переключатель   «Масштаб   развертки»   в положение 50 км.
9.   Убедиться, что самолет имеет безопасное превышение над ближайшими горными вершинами не менее 900±300 м, для чего сравнить  абсолютную высоту  полета  самолета   (высоту  относи­тельно уровня моря) с высотой горной вершины или использовать метод круга безопасности.
В режиме «Горы — Грозы» впереди лежащее пространство облучается узким лучом. Земная поверхность, находящаяся непо­средственно под самолетом и на некотором расстоянии впереди от него, в этом случае на экране индикатора не изображается.
При безопасном превышении над горными вершинами 900±300 м радиус сектора на экране, в котором не изображается земная поверхность, равен 10—15 км. Эту дальность принято называть условным кругом безопасности. Определе­ние превышения полета над горными вершинами методом круга безопасности можно пояснить на рис. 17.15.
 
Использование РПСН-2
 
При подходе к горной вершине отраженный от нее сигнал на экране индикатора будет постепенно приближаться к условному кругу безопасности. При полете самолета на безопасном превыше­нии 900±300 м и приближении его к горной вершине на расстоя­ние 10—15 км отраженный сигнал на экране индикатора достиг­нет круга безопасности. При дальнейшем приближении самолета к горной вершине отраженный сигнал на экране исчезает.
Таким образом, для определения наличия безопасного пре­вышения над горными вершинами методом круга безопасности не­обходимо проследить за движением отметки отраженного сигна­ла на экране индикатора. Изменение яркости и размера отметки при подходе самолета к горной вершине и пропадание ее на эк­ране на дальностях 10—15 км и больше свидетельствует о том, что самолет имеет безопасное превышение над горной вершиной. Если отраженный сигнал при приближении к кругу безопасности не изменяет своего размера и яркости и после пересечения круга безопасности продолжает наблюдаться на экране, то это значит, что полет происходит ниже безопасной высоты. В этом случае необходимо немедленно выполнить маневр для обхода горной вер­шины.
Использование РПСН-2 в режиме «Препятствие» для обнару­жения самолетов. РПСН-2 обеспечивает предупреждение экипа­жа от столкновений с другими самолетами, оборудованными (ак­тивный метод) или не оборудованными ответчиками (пассивный метод). Ответные сигналы ответчиков, установленных на самоле­тах, наблюдаются на экране II канала индикатора пилота, а так­же на экране индикатора штурмана при установке переключате­ля «Канал I — Канал II» на пульте штурмана в положение «Ка­нал II». Ответные сигналы ответчиков и отраженные сигналы от самолетов видны на экранах индикаторов в виде ярких точек. Отметки от самолетов, обнаруженных пассивным методом при высоте полета самолета до 5000 м, могут не просматриваться на фоне отражений от земной поверхности, горных вершин и гро­зовых фронтов.
Наблюдение сигналов ответчика на экране II канала преду­смотрено для обеспечения четкой индикации сигналов от наибо­лее опасного препятствия — самолета, которые в этом случае не маскируются отражениями от земной поверхности и грозовых фронтов. Дальность обнаружения самолетов с ответчиками состав­ляет 50—60 км, а без ответчиков — 30 км.
На II канале имеется световая сигнализация, которая привле­кает внимание экипажа при появлении в зоне обзора станции самолета, оборудованного ответчиком.
Для работы станции в режиме «Препятствие» для обнаруже­ния самолетов необходимо:
1.   Переключатель «Режим работы» на пульте пилота устано­вить в положение «Препятствие», на пульте штурмана — в по­ложение «Самолеты».
2.   На пульте пилота переключатель «Самолеты — Горы — Грозы» поставить в положение «Самолеты».  При этом одновре­менно отключается индикаторная лампочка, сигнализирующая о ра­боте ВАРУ в режиме «Горы — Грозы».
3.   Переключатель  «Масштаб  развертки»  на  пультах пилота и штурмана установить в положение 50 км.
4.  Переключатель «Канал I — Канал II» на пульте штурмана установить в положение «Канал II».
5.  Установить антенну в нулевое положение.
6.   При обнаружении на экране отметки от самолета  опреде­лить степень опасности столкновения.
Определение степени опасности столкновения осуществляется визуальным наблюдением за перемещением отметки самолета по экрану индикатора (рис. 17.16). Потенциально опасные само­леты наблюдаются на экране индикатора под одним и тем же курсовым углом и их перемещение происходит к точке пересе­чения радиальных линий.
Отметки тех самолетов, с которыми возможность столкновений исключена, наблюдаются на экране под разными курсовыми углами и перемещаются по направлению, пересекающему радиальные линии.

Использование РПСН-2
 
В случае если яркостная отмет­ка от самолета перемещается к центру развертки, необходимо от­вернуть свой самолет в сторону. Направление отворота определяет­ся на основании общей картины на экране индикатора.
В РПСН-2 на пульте пилота име­ется положение переключателя ре­жима работ «Выключена стабили­зация тангажа», которое использу­ется для просмотра впереди лежа­щего пространства при наборе вы­соты и снижении. При установке пе­реключателя режима работ в это положение сигнал продольного кре­на, поступающий от ЦГВ самолета к антенне станции, отключается и антенна автоматически устанавливается по направлению продольной оси самолета, что обеспечивает про­смотр пространства в передней полусфере.

Распечатать ..

 
Другие новости по теме:

  • Особенности использования самолетной радиолокационной станции РПСН-3
  • Самолетовождение с использованием самолетной радиолокационной станции р ...
  • Использование РПСН-2 в режимах «Обзор» и «Дальний обзор»
  • Особенности самолетовождения в условиях грозовой деятельности
  • Использование РПСН-2 в режиме «Скорость»


  • Rambler's Top100
    © 2009