Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_459.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337
Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338
Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339
Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, решаемые с ее помощью » Летательные аппараты - Авиационный моделизм и самолетовождение
» Сущность кодовых выражений ЩГЕ и ЩТФ Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на бортовой карте от радиопеленгатора ИПС, а на линии пеленга &md ...
» Поправка на угол схождения меридианов Как известно, на картах конической и поликонической проекций, применяемых для целей радиопеленгации, меридианы непараллельны между собой. Поправкой σ на схождение меридианов называется угол, заключенный между северным направлением истинного меридиана радиостанции и северным направлением истинного меридиана самолета, перенесенного в точку радиостанции параллельно самому себе (рис. 12.7). ...
» Масштаб карты Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местности. Он показывает степень уменьшения линий на карте относительно соответствующих им линий на местности. Масштаб бывает численный и линейный.
» Навигационный треугольник скоростей, его элементы и их взаимозависимость Самолет относительно воздушной массы перемещается с воздушной скоростью в направлении своей продольной оси. Одновременно под действием ветра он перемещается вместе с воздушной массой в направлении и со скоростью ее движения. В результате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...
» Воздушный шар (аэростат) Воздушный шар (аэростат) — летательный аппарат легче воздуха, полет которого объясняется законом Архимеда: сила, выталкивающая погруженное в жидкость (или газ) тело, равна весу жидкости (или газа) в объеме этого тела. Данная сила направлена вертикально вверх и приложена к центру объема погруженной части тела. Иными словами, аэростат поднимается вверх (всплывает) благодаря подъемной си ...
» Постройка шара-монгольфьера Изготовление тепловых воздушных шаров (монгольфьеров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зарница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его постройки — папиросная бумага. Еще понадобятся клей,нитки, карандаш, линейка и ножницы. Постройка шара-монгольфьера. Работу начинают с ...
» Определение места самолета Место самолета определяется с целью полного контроля пути, определения навигационных элементов полета и восстановления потерянной ориентировки. В зависимости от условий полета и навигационной обстановки МС может быть определено: по одному радиопеленгатору; по двум радиопеленгаторам; по радиопеленгатору и радиостанции.
» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется относительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса самолета применяются различные способы отсчета ортодромических путевых углов и курсов самолета, выбор которы ...
» Определение радиодевиации Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или видимой радиостанции.
» Вертолет (геликоптер) Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несущим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без разбега, зависать в воздухе, лететь в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппарат ...
» Двухмоторный электролет Двухмоторный электролет был создан в результате дальнейшего развития моделей с электродвигателем. Демонстрационные полеты такого аппарата вызывают большой интерес в любой аудитории, будь то школа или пионерский лагерь; они хорошо смотрятся на слетах, фестивалях и праздниках. Двухмоторная схема модели позволяет повысить ее энерговооруженность, добиться надежности полета на открытом воздухе.
» Модель самолета из пенопласта Модель самолета из пенопласта (рис. 28) разработана авиамоделистами СЮТ г. Электростали. За основу взят чертеж модели самолета «Вилга-2» и полумакет чехословацких моделистов, изготовленный из бальзы. Строительный материал для этого микросамолета — пенопласт (упаковочный или ПС-4-40).
» Использование РПСН-2 в режимах «Снос» и «Снос точно» Режимы «Снос» и «Снос точно» предназначены для определения угла сноса самолета. Первый используется при полетах до высоты 5000 м, а второй — при полетах на высотах от 5000 м и более. Измерение угла сноса основано на использовании эффекта Доплера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о ...
» Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, ре ... Навигационная система «Трасса» предназначена для непрерывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямоугольной системе координат (дальность и линейное боковое уклонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является измеритель путевой скорости и угла сноса, исп ...
» Основные сведения о РСБН-2 Радиотехническая система РСБН-2 является неавтономной системой самолетовождения. Она состоит из наземного и самолетного оборудования. Система работает на ультракоротких волнах, поэтому обмен сигналами между самолетом и наземным маяком возможен лишь на дальностях прямой видимости, которая в основном зависит от высоты полета (табл. 18.1) и может быть определена по формуле: Д км=3,57 √Нм.
» Пилотажный электролет Тем, кому работа над моделями с электродвигателем покажется интересной, предлагаем построить «пилотажку» (рис. 47), разработанную Ю. Павловым. Эта модель несколько сложнее описанных ранее, но и возможности ее шире, да и энерговооруженность выше. Подкупает и внешняя форма модели, напоминающая настоящий самолет. Крыло склеивают из пластин упаковочного пенопласта. Можно также вырезать его из ц ...
» Умножение и деление чисел при помощи НЛ-10М Умножение и деление чисел на НЛ-10М выполняется по шкалам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямоугольный индекс с цифрой.10 или 100 шкалы 2 установить на множимое, а пробив множителя отсчитать по шкале 1 искомое произведение.
» Выход на конечный пункт маршрута Выход на КПМ должен быть выполнен точно по месту и времени. Это исключает необходимость выполнения маневра для поиска аэродрома посадки и обеспечивает безопасность самолетовождения. Выход на КПМ осуществляется: 1) визуально или по бортовому радиолокатору; 2) по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...
» Модель планера «Малыш» Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от предыдущей «схематички» у этого планера крыло сделано объемным. Постройку модели лучше начать с фюзеляжа. Из фанеры или липовой пластины толщиной 4—5 мм выпиливают пилон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...
» Расчет пройденного расстояния, времени полета и путевой скорости Пройденное расстояние определяется по формуле S = Wt, где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек). Для определения пройденного расстояния на НЛ-10М необходимо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 и ...
» Простейший вертолет — «муха» В практике авиамоделизма наибольшее распространение получили вертолеты одновинтовой схемы. Простейшая модель вертолетов лишь по принципу полета напоминает прототип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким винтом укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.
» Теория ротора Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом пот ...
» Компоненты скорости воздуха относительно плоскости вращения ротора Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежащую в плоскости вращения V cos i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя ...
» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем Радиотехнические средства среди других средств самолетовождения занимают одно из важнейших мест и находят самое широкое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самолетовождение. Радиотехнические средства самолетовождения по месту расположения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: прив ...
» Выбор параметров и влияние их на характеристики ротора Качество ротора и коэффициента подъемной силы зависят, как это видно из уравнения предыдущего параграфа, от следующих параметров: δ - среднего профильного сопротивления; А - тангенса угла наклона кривой Cμ по α для профиля лопасти; k - коэффициента заполнения; Θ - угла установки лопасти; γ - отвлеченной величины
» Полет от радиостанции Полет от радиостанции в заданном направлении может быть выполнен в том случае, если она расположена на ЛЗП в ИПМ, ППМ или контрольном ориентире. В этом случае полет осуществляется одним из следующих способов: с выходом на ЛЗП; с выходом в КПМ (ППМ). Пеленги, определяемые при полете от радиостанции, можно использовать для контроля пути по направлению.
» Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высот ... Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самолетов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:
» Умножение данного числа на тригонометрические функции углов Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчитать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...
» Несложный пилотажный змей Совсем недавно, в конце 70-х годов, древние летательные аппараты получили дальнейшее развитие — появились пилотажные змеи. Первые, не всегда удачные экспериментальные полеты помогли разработать оптимальные размеры и форму, изучить технику управления таким змеем. Как и во всех моделях среди акробатических змеев есть как простые, так и сложные конструкции. Для начала рекомендуем построи ...
» Модель вертолета «Пэнни» Модель вертолета «Пэнни» (рис. 54) разработал американский авиамоделист Д. Буркхем. Этот миниатюрный вертолет с резиновым мотором снабжен хвостовым винтом и Имеет автомат стабилизации. Основой модели является силовая рейка из сосны длиной 114 мм и сечением 5x5 мм. Сбоку приклеивают пластину из пенопласта толщиной 5 мм и закругляют по виду сбоку; получается своеобразный корпус модели. Сверху ...
Навигационная система «Трасса» предназначена для непрерывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямоугольной системе координат (дальность и линейное боковое уклонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является измеритель путевой скорости и угла сноса, использующий эффект Доплера. Поэтому эту систему обычно называют доплеровской автономной навигационной системой. Текущие значения угла сноса, путевой скорости и координаты места самолета непрерывно выдаются на указатели системы. Система «Трасса» позволяет решать следующие задачи самолетовождения: 1. Измерять путевую скорость самолета и угол сноса. Точность измерения путевой скорости достигает 0,5% ее значения, а угла сноса ±20°. 2. Осуществлять вывод самолета на ЛЗП подбором курса по УС. 3. Определять место самолета. 4. Облегчать решение задачи прибытия самолета в пункт назначения в заданное время. Достоинством системы является высокая точность измерения угла сноса и путевой скорости, что повышает надежность и точность самолетовождения, облегчает работу штурмана в полете. Она дает возможность измерять угол сноса и путевую скорость в режиме набора высоты и своевременно вводить поправки в курс при изменении угла сноса, вызванного непостоянством ветра по маршруту, изменением скорости или высоты полета. Система проста в эксплуатации. Она не требует в полете никаких регулировок и подстроек. В тех случаях, когда к системе не поступают отраженные сигналы, она автоматически переходит в режим работы «Память» и продолжает вести счисление пути. Система имеет простую методику контроля точности работы аппаратуры. Проверка нормальной работы системы осуществляется путем сравнения отсчетов указателей с калибровочными данными измерителей. Система «Трасса» имеет несколько модификаций. По конструкции все системы одинаковы. Отличаются они только некоторыми техническими данными и диапазоном измерения путевой скорости. «Трасса-А» измеряет путевую скорость в диапазоне 500— 1100 км/ч и «Трасса-Б» — в диапазоне 300—800 км/ч.
Warning: Unknown: open(/var/lib/php/session/sess_hjgglopala9b7jeru0sk4l0692, O_RDWR) failed: Permission denied (13) in Unknown on line 0
Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0