» Летательный аппарат тяжелее воздуха Самолет — самый распространенный сегодня летательный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит русскому исследователю и изобретателю, морскому офицеру Александру Федоровичу Можайскому. В 1854 году он задумал построить воздухоплавательный аппарат, кото ...
» Курсы самолета девиация магнитных компасов Для определения и выдерживания курса самолета наиболее широкое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно пр ...
» Предполетная проверка НИ-50БМ Для проверки НИ-50БМ перед полетом необходимо: 1. Включить электропитание прибора по переменному и постоянному току. 2. Включить и подготовить к работе ГИК. Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3. Установить на автомате курса и задатчике ветра МУК=МК самолета. 4. Ввести в задатчик ветра направлен ...
» Пилотажный электролет Тем, кому работа над моделями с электродвигателем покажется интересной, предлагаем построить «пилотажку» (рис. 47), разработанную Ю. Павловым. Эта модель несколько сложнее описанных ранее, но и возможности ее шире, да и энерговооруженность выше. Подкупает и внешняя форма модели, напоминающая настоящий самолет. Крыло склеивают из пластин упаковочного пенопласта. Можно также вырезать его из ц ...
» Определение летающих моделей Модель планера — модель летательного аппарата, не обеспеченная собственной силой тяги, у которой подъемная сила образуется аэродинамическими силами, действующими на неподвижно закрепленные поверхности. Запускают при помощи леера не длиннее 50 м. Технические требования: площадь несущей поверхности — 32—34 дм2, минимальная масса — 410 г, максимальная удельная грузоподъ ...
» Условия плавной работы ротора Плавность в работе ротора на всех полетных режимах автожира является необходимым требованием, так как неровности и тряска, передаваясь на остальные части машины, будут влиять на прочность конструкции, регулировку ротора и других деталей. За неимением достаточного эксплуатационного опыта придется пока ограничиться предварительными соображениями об условиях плавной работы ротора. Во-первых, ротор до ...
» Курсы самолета Курсом самолета называется угол, заключенный между северным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета относительно меридиана. Курс самолета может бы ...
» Перевод морских и английских миль в километры и обратно Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852; Sкм = S(AM)·1,6; S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6. Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответственно против индекса ММ или AM .отсчитать по ...
» Спарка-тренажер Как известно, свой самый первый полет курсант выполняет не один, а вдвоем с инструктором на самолете с двойным управлением. Сначала управляет инструктор, а обучаемый лишь слегка придерживает ручку и запоминает необходимые для полета манипуляции. И лишь на следующем этапе инициатива переходит к ученику. Однако инструктор и тут всегда начеку — в критической ситуации он всегда может вмешат ...
» Использование РПСН-2 в режиме «Скорость» Режим «Скорость» предназначен для определения путевой скорости самолета. Она определяется по времени движения ориентира между метками дальности на экране индикатора. В РПСН-2 в режиме «Скорость» автоматически включается масштаб развертки 50 км и регулируемая задержка запуска развертки в диапазоне 60—150 км. Это позволяет выбирать ориентиры для определения путевой скорости на достаточно б ...
» Содержание карт Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...
» Классификация авиационных карт по назначению По своему назначению карты, применяемые в гражданской - авиации, делятся: на полетные, применяемые для самолетовождения по трассам и маршрутам в районе полетов; на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астрономических средств; на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения м ...
» Модель планера Модель планера — конструкция, которая воспроизводит лишь схему основных частей планера, не копирующая его внешне. Знакомство с моделями планеров лучше начать с самой простой модели, изготовленной из бумаги. В практике авиамоделизма ее называют учебной (рис. 16).
» Расчет истинной и приборной воздушной скорости в уме В полете не всегда имеется возможность рассчитать воздушную скорость с помощью навигационной линейки. Поэтому необходимо уметь приближенно рассчитать скорость в уме. Кроме того, такой расчет позволяет контролировать правильность инструментальных, вычислений и тем самым предотвращать в них грубые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к ...
» Основные радионавигационные элементы Основными радионавигационными элементами при использовании радиокомпаса являются: курсовой угол радиостанции (КУР); отсчет радиокомпаса (ОРК); радиодевиация (Δр); пеленг радиостанции (ПР); пеленг самолета (ПС).
» Проверка правильности остаточной радиодевиации в полете В полетах штурман должен использовать каждую возможность для проверки правильности остаточной радиодевиации. Наиболее простой и удобный способ проверки — это сравнение фактического и полученного по радиокомпасу пеленгов радиостанции. Для этого необходимо:
» Определение навигационных элементов на контрольном этапе Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигационных средств для автоматического измерения этих элементов последние могут быть определены на контрольном этапе. Длина контрольного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с высоты полета. На контрольно ...
» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...
» Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей В целях достижения экономичности полеты по трассам необходимо выполнять на наивыгоднейших режимах. Данные о крейсерских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица предназначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установленных крейсерских режимов полета для с ...
» Порядок работы штурмана при выполнении полета по воздушной трассе Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводится контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных проверок.
» Периодическое изменение угла взмаха лопасти и угла атаки сечения лопасти Для выяснения махового движения па разных режимах и изменении угла β по ψ а так же для выяснения влияния махового движения на истинный угол атаки α сечения по вышеприведенным формулам сделан подсчет для ротора, имеющего следующие употребительные в практике параметры: γ=10; Θ=2˚
» Разграфка и номенклатура (обозначение) карт Каждая карта издается на отдельных листах, имеющих определенные размеры по долготе и широте и представляющих части общей карты целого государства, материка, всего мира. Система деления общей карты на отдельные листы называется ее разграфкой, а система обозначения листов — номенклатурой. Каждому листу карты в зависимости от масштаба по определенному правилу присваивается свое буквенное и ...
» Поперечная балансировка автожира Если ось ротора и ц. т. автожира лежат в плоскости симметрии автожира (фиг. 92), то при установившемся прямолинейном полете на автожир буду действовать следующие крепящие моменты: 1) момент на головке ротора согласно уравнению (78); 2) момент от поперечной силы, равный: 3) при моторном полете реактивный момент пропеллера, равный:
» Расчет времени начала снижения при заходе на посадку с прямой для самолета Ан-24 При заходе на посадку с прямой штурман обязан рассчитать момент начала снижения и удаление ТНС от аэродрома посадки. Снижение с высоты эшелона до высоты горизонтального полета при достаточном запасе топлива и большом расстоянии до аэродрома рекомендуется выполнять на режиме скоростного снижения на наибольшей допустимой скорости 460 км/ч по прибору и вертикальной скорости 5 м/сек. По достижении в ...
» Модель конструкции Г. Безрука Модель конструкции Г. Безрука (рис. 37). С этой моделью ее создатель успешно выступал на соревнованиях по воздушному бою во Всероссийском пионерском лагере «Орленок». Простота в изготовлении, неплохая скорость и маневренность — вот главные качества модели.
» Категории и классы летающих моделей Основным документом, регламентирующим постройку авиационных летающих моделей, своеобразным сводом законов являются «Правила проведения соревнований по авиамодельному спорту в СССР». В основе этих Правил — положения кодекса ФАИ — технические требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены следующие категории авиационных моделе ...
» Дальность полета Цель данной игры — достижение наибольшей дальности полета. Перед началом надо оговорить, сколько раз каждый участник будет запускать свою модель, иными словами, сколько будет зачетных полетов (обычно — три). А перед ними надо дать возможность совершить один-два тренировочных (пристрелочных) запуска. Очередность выхода на старт обычно определяют жеребьевкой.
» Длина дуги меридиана, экватора и параллели Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему равна длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) = = =111 км. 1ґ дуги меридиана (экватора) = = 1,852 км = 1852 м.
» Навигационные задачи на маневрирование - Определение времени последнего срока вылета Дневные срочные вылеты с аэродромов, не оборудованных для ночных полетов, разрешается начинать за 30 мин до восхода Солнца и заканчивать полет за 30 мин до наступления темноты в равнинной и холмистой местности и не позднее захода Солнца в горной местности. В районах севернее широты 60° полеты разрешается заканчивать за 30 мин до наступления темноты.
» Модель планера «Малыш» Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от предыдущей «схематички» у этого планера крыло сделано объемным. Постройку модели лучше начать с фюзеляжа. Из фанеры или липовой пластины толщиной 4—5 мм выпиливают пилон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...
Система «Трасса» может быть использована в следующих режимах: «ДИСС», «Память» и автономный режим работы навигационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а) Перед вылетом: 1. Установить на щитке управления левый переключатель в положение «Выключено», а правый — в положение «Суша» (при полете над водной поверхностью — в положение «Море»). 2. Переключатель «ДИСС — АНУ» поставить в положение «ДИСС». 3. Установить переключатель «Счетчик» в положение «Выключено». 4. Установить стрелки счетчика координат в нулевое положение. 5. Установить на задатчике угла карты значение ОЗМПУ первого участка маршрута. 6. Включить АЗС с надписью «АНУ, Трасса». 7. Перед взлетом включить систему, для чего левый переключатель на щитке управления перевести в положение «Вкл.», при этом загорается зеленая сигнальная лампочка. б) После взлета: 1.He ранее чем через 2 мин после включения системы и на высоте полета не менее 200—300 м включить высокое напряжение, для чего левый переключатель перевести в положение «Высок.», при этом на щитке управления загорается красная сигнальная лампочка. 2. Через 3 мин после включения высокого напряжения система начинает работать и выдавать на указатель текущее значение путевой скорости и угла сноса. 3. При проходе ИПМ включить счетчик координат, для чего переключатель «Счетчик» поставить в положение «Включено». 4. Для полета по ЛЗП взять курс следования, который в сумме с углом сноса, снятым с указателя, был бы равным ОЗМПУ, т.е. ОМК+(±УС)=ОЗМПУ. 5. Рассчитать время прибытия на КО (ППМ) по путевой скорости, отсчитанной на указателе. 6. Когда необходимо определить место самолета, произвести отсчет показаний счетчика координат, а затем отложить по ЛЗП пройденное расстояние, отсчитанное по стрелке «С», и от полученной точки отложить ЛБУ, отсчитанное по стрелке «В». Для повышения точности выдачи системой координат места самолета необходимо точно устанавливать начальные координаты, периодически производить корректировку показаний счетчика координат и своевременно переходить на систему отсчета координат следующего участка маршрута. За начальные координаты места самолета могут быть взяты координаты аэродрома вылета или координаты любой точки на маршруте, точный пролет которой легко определить с помощью бортового радиолокатора, радиокомпаса, РСБН-2 или визуально. Начальные координаты места самолета определяются по полетной карте, подготовленной для использования системы «Трасса», и устанавливаются на счетчике координат. Включать счетчик следует точно в момент пролета намеченной точки. Система «Трасса» ведет счисление пути с учетом курса, угла сноса, путевой скорости и путевого угла. Так как все эти элементы измеряются с определенной точностью, навигационный вычислитель вырабатывает координаты места самолета с некоторыми погрешностями, которые по мере удаления самолета от места установки начальных координат возрастают. Для повышения точности счисления пути системой «Трасса» необходимо периодически осуществлять в полете корректировку показаний счетчика координат путем перевода его стрелок на фактические координаты места самолета, определенного штурманом с помощью самолетного радиолокатора, системы РСБН-2 или визуально. После сброса накопившихся погрешностей система в течение некоторого времени будет более точно выдавать координаты места самолета. Наиболее удобно корректировку показаний счетчика проводить в момент пролета траверза радиолокационного ориентира или траверза радиомаяка системы РСБН-2 (рис. 20.4). В этом случае координата Сф самолета будет равна координате радиолокационного ориентира С, т. е. Сф = С, а координата Вф — разности координаты радиолокационного ориентира и горизонтальной дальности от самолета до радиолокационного ориентира, т. е. Вф=В—ГД, если радиолокационный ориентир расположен справа от ЛЗП, или Вф=ГД—В, если этот ориентир слева от ЛЗП. Обнаружив, что самолет уклонился, необходимо выйти на ЛЗП. Для этого самолет разворачивают в сторону ЛЗП и продолжают полет до прихода стрелки «В» на нуль, после чего самолет устанавливают на курс следования, равный ОМК= ОЗМПУ— (±УС).
При полете на больших скоростях выход на новое направление производится с учетом радиуса разворота. Вследствие этого разворот начинают до выхода на ППМ на расстоянии, равном линейному упреждению разворота (рис. 20.5). Переход на систему отсчета координат очередного участка маршрута обычно осуществляется в точке начала разворота. Для точного выхода на новую ЛЗП и перехода на систему отсчета координат следующего участка маршрута необходимо: 1. До подлета к ППМ рассчи тать ЛУР и координаты точки начала разворота по отношению нового участка маршрута. Расчет этих элементов производится по формулам: ЛУР = RtgУР/2; С = ЛУРсоsУР; В = ЛУР sin УР. В практике координаты точки начала разворота рассчитывают на НЛ-10М. Для этого треугольный индекс шкалы 4 подводят против линейного упреждения разворота, взятого по шкале 5. Затем против угла разворота, взятого по шкале 3, отсчитывают по шкале 5 значение координаты В, а против разности 90° — УР — значение координаты С. Координаты точки перехода можно измерить непосредственно по карте в период подготовки к полету. 2. Удерживая стрелку «В» счетчика координат на нуле, наблюдать за стрелкой «С». Когда она покажет пройденное расстояние, равное разности длины участка и ЛУР, начать разворот для выхода на новый участок маршрута. 3. В момент начала разворота быстро и точно установить на задатчике угла карты ОЗМПУ следующего участка маршрута, а на счетчике координат — рассчитанные координаты точки начала разворота. 4. Выполнить разворот с заданным креном, наблюдая за показанием стрелки «В». 5. Если после окончания разворота стрелка «В» не будет на нуле, то доворотом самолета в сторону ЛЗП добиться ее прихода на нуль, после чего продолжать полет с расчетным курсом следования, равным ОМК=ОЗМПУ—(±УС). Такая методика перехода на новую систему отсчета координат позволяет использовать показания счетчика координат для выхода на новую ЛЗП и для точного последующего счисления пути после разворота.
Использование системы «Трасса» в режиме «Память». Режим «Память» может быть включен преднамеренно путем установки левого переключателя в положение «Пам» либо автоматически в случае прекращения поступления отраженных сигналов при кренах самолета более 10° или в случае полета на большой высоте над спокойной водной поверхностью. Переход системы на работу в режим «Память» сигнализируется загоранием табло с надписью «Память», расположенного на указателе угла сноса и путевой скорости. В режиме «Память» система ведет счисление пути с учетом курса, истинной воздушной скорости запомненных составляющих вектора ветра. В этом случае счисление пути будет выполняться с допустимыми погрешностями в течение 15—20 мин, так как фактические данные о ветре изменяются и не будут равны тем, которые запомнил навигационный вычислитель. Хотя точность счисления пути в режиме «Память» несколько ниже, этот режим обеспечивает непрерывность счисления пути при временном прекращении поступления отраженных сигналов, чем повышается надежность работы системы. Использование системы «Трасса» в автономном режиме работы навигационного вычислителя («АНУ»). Автономный режим работы системы является резервным и применяется только при длительном отключении ДИСС. При включении системы в этот режим в схему навигационного вычислителя подключается задатчик ветра и дальнейшая работа вычислителя становится аналогичной работе навигационного индикатора НИ-50БМ. Для использования системы «Трасса» в автономном режиме работы необходимо: 1. Установить переключатель «ДИСС — АНУ» в положение «АНУ». 2. На задатчике ветра установить угол карты, равный ОЗМПУ, направление навигационного ветра и его скорость. 3. На задатчике угла карты установить ОЗМПУ данного участка маршрута. Точность счисления пути в автономном режиме работы зависит от точности и частоты определения ветра. Поэтому для уменьшения ошибок счисления пути ветер следует определять и устанавливать на задатчике ветра через каждые 15—20 мин полета.