» Списывание девиации магнитных компасов Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвестна, практически нельзя, так как она может достигать больших значений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, элек ...
» Организация авиамодельного кружка Кружок — одна из форм работы по техническому творчеству. Он объединяет школьников, интересующихся определенной областью техники. Цель занятий любого технического кружка — приобщение ребят к труду, развитие их творческих способностей, формирование умений и навыков. Авиамодельный кружок объединяет ребят, увлеченных авиацией. Для многих из них авиамоделизм, это увлекательное и серь ...
» Проверка правильности остаточной радиодевиации в полете В полетах штурман должен использовать каждую возможность для проверки правильности остаточной радиодевиации. Наиболее простой и удобный способ проверки — это сравнение фактического и полученного по радиокомпасу пеленгов радиостанции. Для этого необходимо:
» Основные сведения о НИ-50БМ В комплект навигационного индикатора входят следующие основные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кроме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автомат ...
» Использование курсовых приборов самолета Ан-24 Самолет Ан-24 оборудован гироскопическим индукционным компасом ГИК-1 и гирополукомпасом ГПК-52, которые позволяют выполнять полет по заданному маршруту как по локсодромии, так и по ортодромии. При подготовке к полету штурман обязан решить, какой вид полета будет применяться, и в зависимости от этого подготовить и нанести на карту необходимые данные. Полеты по локсодромии рекомендуется осуществл ...
» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным документом, в котором отражаются применяемые способы самолетовождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...
» Масштаб карты Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местности. Он показывает степень уменьшения линий на карте относительно соответствующих им линий на местности. Масштаб бывает численный и линейный.
» Установка самолета на заданный магнитный курс Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как Δк = МК - КК. Самолет устанавливается на заданный МК: 1) пеленгованием продольной оси самолета; 2) по магнитному пеленгу ориентира.
» Шарнирное соединение из ниток Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важнейших факторов успешного полета. Немаловажное значение имеет и то, как подвешены рули высоты и закрылки. Отсутствие люфтов, легкость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомендовали себя шарниры, изготовле ...
» Модель вертолета чешских авиамоделистов Модель вертолета чешских авиамоделистов (рис. 53) напоминает настоящий геликоптер. Фюзеляж заодно с килем вырезают из пластины пенопласта толщиной 5 мм и по периметру фигуры окантовывают липовыми рейками сечением 5X1 мм. В качестве силовой балки используют сосновую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшипник винта, а с другого привязывают крючок из прово ...
» Пилотажный электролет Тем, кому работа над моделями с электродвигателем покажется интересной, предлагаем построить «пилотажку» (рис. 47), разработанную Ю. Павловым. Эта модель несколько сложнее описанных ранее, но и возможности ее шире, да и энерговооруженность выше. Подкупает и внешняя форма модели, напоминающая настоящий самолет. Крыло склеивают из пластин упаковочного пенопласта. Можно также вырезать его из ц ...
» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется относительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса самолета применяются различные способы отсчета ортодромических путевых углов и курсов самолета, выбор которы ...
» Умножение данного числа на тригонометрические функции углов Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчитать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...
» Определение места самолета Место самолета при помощи наземного радиолокатора определяется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1) запросить у диспетчера место самолета; 2) получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3) отложить на карте от радиолокатора полученный азимут и дальность на линии азимута.
» Модель планера «Малыш» Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от предыдущей «схематички» у этого планера крыло сделано объемным. Постройку модели лучше начать с фюзеляжа. Из фанеры или липовой пластины толщиной 4—5 мм выпиливают пилон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...
» Бумажная модель планера «ДОСААФ» Для изготовления модели планера «ДОСААФ» (рис. 18) кроме бумаги, ножниц, линейки и карандаша понадобится еще и клей. Лучше всего применять клей ПВА, а бумагу — из альбомов для рисования. С рисунка по клеткам переносят форму фюзеляжа на сложенную вдвое бумажную заготовку и вырезают его. Затем таким же образом вырезают крыло, груз, лонжерон и киль. На шаблонах частей стрелкой указано ...
» Категории и классы летающих моделей Основным документом, регламентирующим постройку авиационных летающих моделей, своеобразным сводом законов являются «Правила проведения соревнований по авиамодельному спорту в СССР». В основе этих Правил — положения кодекса ФАИ — технические требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены следующие категории авиационных моделе ...
» Ромбический коробчатый змей Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размерами (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной силы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми самолетами. Каркас змея делают из сосновых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые т ...
» Списывание радиодевиации - Причины радиодевиации и ее характер Работа радиокомпаса основана на использовании направленной характеристики приема радиоволн рамочной антенной. С помощью такой антенны (рамки) определяется направление, с которого приходят радиоволны к самолету. Однако не всегда рамка радиокомпаса устанавливается в направлении на радиостанцию. Обычно при пеленговании наземных радиостанций рамка радиокомпаса устанавливается в направлении, которое о ...
» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...
» Силы а моменты на роторе Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда ...
» Определение места самолета штилевой прокладкой пути При ведении визуальной ориентировки необходимо знать район предполагаемого местонахождения самолета, чтобы определить, какой участок карты сличить с местностью. Район предполагаемого местонахождения самолета может быть определен штилевой прокладкой пути, которая выполняется по записанным в бортовом журнале курсам, воздушной скорости и времени полета.
» Защита для жиклера Устанавливая микродвигатели с передним распределением на модели воздушного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у моторов, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жиклер. Выход из этого положения весьма прост: достаточно выпилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный предох ...
» Классификация ориентиров и их главные отличительные признаки Визуальная ориентировка ведется по земным ориентирам. Ориентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем ландшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и точечные.
» Единицы измерения расстояний В самолетовождении основными единицами измерения расстояний являются километр и метр. В некоторых случаях в качестве единицы измерения расстояния применяется морская миля (ММ). В США и Англии для измерения расстояний, кроме морской мили, применяется английская статутная миля (AM) и фут. Морская миля представляет собой длину дуги меридиана в 1'.
» Направления на земной поверхности В самолетовождении принято направления на земной поверхности измерять в градусах относительно северного направления меридиана. Направления могут указываться азимутом (истинным пеленгом) и путевым углом. Азимутом, или истинным пеленгом, ориентира называется угол, заключенный между северным направлением меридиана, проходящего через данную точку, и направлением на наблюдаемый ориентир (рис. 1.4 ...
» Подготовка к проведению радиодевиационных работ Подготовка к проведению радиодевиационных работ включает: 1. Подготовку девиационного пеленгатора, бланков протоколов выполнения радиодевиационных работ и бланков графиков. 2. Выбор для выполнения радиодевиационных работ площадки, удаленной не менее чем на 150—200 м от стоянок самолетов, строений и линий высоковольтных передач. Площадка должна быть горизонтальной, в направле ...
» Дирижабли Конструктивно различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаблей кабина и двигатель крепятся на стропах к оболочке из газонепроницаемой ткани. У полужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме. Жесткие дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая установка жесткого ...
» Летательный аппарат тяжелее воздуха Самолет — самый распространенный сегодня летательный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит русскому исследователю и изобретателю, морскому офицеру Александру Федоровичу Можайскому. В 1854 году он задумал построить воздухоплавательный аппарат, кото ...
Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом потоке и частично затрагивающих авторотирующие винты, однако все они, за исключением указанных работ Глауэрта и Локка, рассматривают работу авторотирующих винтов с лопастями, не имеющими махового движения, и, стало быть, не вполне аналогичную с работой ротора автожира.
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутствии достаточной скорости вращения закинуться вверх под действием подъемной силы ввиду недостаточной величины распрямляющей их центробежной силы.
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда и угол установки по длине лопасти берутся постоянными, хотя в действительности конец лопасти обычно имеет закругление, а близко у корня хорда уменьшается. Изменение хорды и угла установки вдоль лопасти по какой-либо другой зависимости от радиуса не отразятся на методе расчета, но значительно усложнит его.
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.
Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежащую в плоскости вращения V cos i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя из следующих соображений. Согласно теореме о количестве движения направление индуктивной скорости будет прямо противоположно направлению полной аэродинамической силы ротора, а так как главным компонентом последней является тяга, силы Н и S малы по сравнению с Tk, то, стало быть, можно считать, что индуктивная скорость направлена по оси ротора.
Рассмотрим скорость воздуха относительно элемента лопасти dr, отстоящего от оси ротора на расстоянии r; лопасть имеет угловое положение ψ и угол взмаха β. Взятый элемент кроме скоростей, имеет еще угловую скорость вращения Ω вокруг оси ротора и угловую скорость махового движения . Относительную скорость воздуха у элемента разложим на две составляющих: на радиальную, направленную по продольной оси лопасти, и на лежащую в плоскости, нормальной к продольной оси
Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.
Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)
Для выяснения махового движения па разных режимах и изменении угла β по ψ а так же для выяснения влияния махового движения на истинный угол атаки α сечения по вышеприведенным формулам сделан подсчет для ротора, имеющего следующие употребительные в практике параметры: γ=10; Θ=2˚
Для аэродинамического расчета удобно иметь характеристики ротора, отнесенные к поступательной скорости V, т.е. коэффициенты подъемной силы и лобового сопротивления ротора. Определение коэффициентов подъемной силы и лобового сопротивления, а также качества ротора при определенном угле атаки ротора, а стало быть и получение поляры, можно вести двумя следующими способами. Способ непосредственного подсчета. Подъемная сила и лобовое сопротивление ротора (фиг. 63) выражаются через тягу Т и продольную силу Н следующим образом: (38)
Качество ротора и коэффициента подъемной силы зависят, как это видно из уравнения предыдущего параграфа, от следующих параметров: δ - среднего профильного сопротивления; А - тангенса угла наклона кривой Cμ по α для профиля лопасти; k - коэффициента заполнения; Θ - угла установки лопасти; γ - отвлеченной величины
На фиг. 70 даны характеристика ротора, имеющего параметры А = 3, δ = 0,006, γ = 10, Θ = 2˚, k=1,0 и характеристика монопланного крыла, имеющего размах, равный диаметру ротора, и относительное удлинение λ = 6. Крыло имеет тот же профиль что и лопасть ротора автожира (Геттинген429),причем коэффициент подъемной силы крыла в целях сравнения отнесен к площади круга отметаемого ротором. Приблизительное значение индуктивного сопротивления, отнесенного к Сy нанесено на фиг.68 пунктиром; оно будет одинаково для обеих несущих поверхностей.