www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Сокращенные обозначения и условные знаки, принятые в самолетовождении
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
return_links(); ?>
return_block_links(); ?>
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Основные точки, линии и круги на земном шаре
Земля непрерывно вращается с запада на восток. Диаметр, во­круг которого происходит это вращение, называется осью враще­ния Земли (рис. 1.2). Эта ось пересекается с поверхностью Земли в двух точках, ко­торые называются географическими полюсами: один Се­верным (С), а другой Южным» (Ю). Северным называется тот по­люс, в котором, если смотреть на него сверху, вращение Земли на­правлено против хода ча ...

» Пеленг и курсовой угол ориентира
Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного ме­ридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часо­вой стрелки от 0 до 360°.

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» Авиационный моделизм
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно. Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамо ...

» Навигационные задачи на маневрирование - Определение времени последнего срока вылета
Дневные срочные вылеты с аэродромов, не оборудованных для ночных полетов, разрешается начинать за 30 мин до восхода Солн­ца и заканчивать полет за 30 мин до наступления темноты в рав­нинной и холмистой местности и не позднее захода Солнца в гор­ной местности. В районах севернее широты 60° полеты разрешается заканчивать за 30 мин до наступления темноты.

» Механизация крыла учеб­ной модели
Механизация крыла учеб­ной модели (рис. 68). Три палки — две струны... Так мо­делисты в шутку говорят об учебных моделях. Те и в са­мом деле, как правило, цельнодеревянные: и крыло, и фю­зеляж, и стабилизатор с ки­лем — из липовых пластин. Ко­нечно, такие аппараты просты. Это их достоинство. Но, к сожалению, их летные каче­ства оставляют желать лучше­го — высокая удельная нагруз­ ...

» Расчет времени и места встречи самолета с темнотой или рассветом и определение продолжительности ноч ...
Когда полет начался днем, а заканчивается ночью или наоборот, необходимо знать, в какое время произойдет встреча самолета с темнотой или рассветом и какова продолжительность ночного по­лета. Время и место встречи самолета с темнотой или рассветом мож­но рассчитать с помощью НЛ-10М или по графику. Рассмотрим порядок такого расчета с помощью НЛ-10М.

» Поправка на угол схождения меридианов
Как известно, на картах конической и поликонической проек­ций, применяемых для целей радиопеленгации, меридианы непа­раллельны между собой. Поправкой σ на схождение меридианов назы­вается угол, заключенный между северным направлением истин­ного меридиана радиостанции и северным направлением истинного меридиана самолета, перенесенного в точку радиостанции парал­лельно самому себе (рис. 12.7). ...

» Девиация компаса и вариация
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к зап ...

» Использование РПСН-2 в режиме «Препятствие»
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, ко ...

» Летатель­ный аппарат тяжелее воздуха
Самолет — самый распро­страненный сегодня летатель­ный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называ­ли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит рус­скому исследователю и изобре­тателю, морскому офицеру Александру Федоровичу Мо­жайскому. В 1854 году он задумал построить воздухопла­вательный аппарат, кото ...

» Движение лопастей
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.

» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ...
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

» Учет влияния ветра на полет самолета - Ветер навигационный и метеорологический
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты. С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На ...

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Модель планера «Малыш»
Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от преды­дущей «схематички» у этого планера крыло сделано объем­ным. Постройку модели лучше на­чать с фюзеляжа. Из фанеры или липовой пластины толщи­ной 4—5 мм выпиливают пи­лон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...

» Игры и соревнования
Одно из доступных и простых — со­ревнование иа время полета моделей с парашютом. Если позволяют условия, можно проводить несколько запусков-туров, если нет — ограничить­ся одним. Продолжительность фиксируемого полета — время с момента взлета модели до момента посадки или до того момента,  когда  она  скроется из поля зрения. Участник, модель которого покажет нан-большее время пол ...

» Помещение для занятий авиамоделизмом
Для работы авиамодельного кружка пионерского лагеря необходимо светлое помеще­ние — мастерская площадью 40—45 м2 для размещения 15—20 рабочих мест. Единой схемы организации мастерской не существует, все опреде­ляется возможностями пионер­лагеря. А они не такие уж и большие. Поэтому на прак­тике площадь мастерской обыч­но не превышает 30 м2. Это, конечно, несколько затрудняет рабо ...

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Петля Нестерова
Задача участников в этом соревнова нии — заставить модель вы­полнить петлю Нестерова Судьи, наблюдая за полетами сбоку, оценивают эту фигуру выполненную каждой моделью, в очках. Так, четкая и ровная петля, похожая на окруж ность, оценивается в 5 очков. петля с зависанием, вытянутая,— в 4 очка и т. д. Участник, набравший наибольшую сумму очков за три полета, признается победителем.

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с ...

» Предотвращение случаев попаданий самолетов в зоны с особым режимом полетов
Над территорией СССР установлены определенные режимы полетов, обеспечивающие безопасность полетов по трассам, в воздушных зонах крупных центров страны и в районах аэродро­мов, а также предотвращающие случаи нарушения экипажами самолетов государственной границы Союза ССР и позволяющие осуществлять контроль за полетами самолетов.

» Одноступенчатая модель ракеты
Одноступенчатая модель ракеты (рис. 58). Корпус клеят из двух слоев чертежной бу­маги на оправке диаметром 20 мм. Размер бумажной за­готовки 300X275 мм. Оправ­кой может служить круглый стержень из металла или дру­гого материала нужного диа­метра. Дав просохнуть бумаге, шов зачищают шлифовальной шкуркой и покрывают жидким нитролаком.

» Парусная тележка
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 м ...

» Электролеты
В настоящее время среди авиамоделистов нашей страны все большее распространение получают модели самолетов с электродвигателем — электролеты. Их строят как для свободного полета, так в кор­довом варианте. И если кон­струирование свободнолетающих электролетов дело не­простое, то изготовление кор­довых «электричек» по силам многим любителям малой авиа­ции. Кордовые авиамодели с электродвигателе ...

» Модель ракеты «Родник»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают ...

» Определение места самолета
Место самолета в полете определяется в целях контроля пути, определения навигационных элементов и восстановления поте­рянной ориентировки. С помощью радиокомпаса место самолета может быть определено по одной и двум радиостанциям. Определение места самолета по одной радиостанции двух­кратным пеленгованием и прокладкой пеленгов на карте. Для применения данного способа необходимо использовать боковые ...

» Контроль пути по направлению и дальности
Контроль пути по направлению и дальности может осуществляться с помощью боковых радиолокаторов путем нанесения на карту места самолета по переданным на борт самолета азимуту и дальности. Такой контроль можно осуществить и без прокладки А и Д на карте, что сокращает время на получение необходимых данных контроля пути.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Сокращенные обозначения и условные знаки, принятые в самолетовождении
Самолетовождение  |   Просмотров: 36816  
 
Точки и линии
МС — место   самолета
ИПМ — исходный   пункт   маршрута
ППМ — поворотный   пункт   маршрута
КО — контрольный   ориентир
КЭ — контрольный   этап
ЛЗП — линия   заданного   пути
ЛФП — линия фактического пути
АЛП — астрономическая   линия   положения
РНТ — радионавигационная   точка
ОПРС — отдельная   приводная   радиостанция
РСБН — радиотехническая   система   ближней   навигации

Направления, углы и координаты
С — север
Ю — юг
В — восток
3 — запад
Си — северное   направление   истинного   меридиана
См — северное   направление   магнитного   меридиана
Ск — северное   направление   компасного   меридиана
Си.о — северное направление истинного опорного меридиана
См.о — северное направление магнитного опорного меридиана
ЗИПУ — заданный   истинный   путевой   угол
ЗМПУ — заданный   магнитный   путевой   угол
ФИПУ — фактический   истинный   путевой   угол
ФМПУ — фактический   магнитный   путевой   угол
ОЗИПУ — ортодромический заданный  истинный путевой угол
ОЗМПУ — ортодромический  заданный  магнитный  путевой  угол
ИК — истинный   курс
МК — магнитный   курс
КК — компасный   курс
МКр — магнитный   курс   расчетный
МКср — магнитный   курс   средний
МКсл — магнитный   курс   следования
МКвых — магнитный   курс   выхода   на ЛЗП
ОИК — ортодромический   истинный   курс
ОМК — ортодромический   магнитный   курс
Δк — девиация   компаса
Δр — радиодевиация
Δм — магнитное   склонение
Δ — вариация
УС — угол   сноса
УСр — угол   сноса   расчетный
УСф — угол сноса фактический
БУ — боковое   уклонение   в   градусах
ДП — дополнительная   поправка   в   курс
ПК — поправка   в   курс
δ — направление  ветра   метеорологическое, отсчитанное от магнит­ного меридиана
НВ — направление ветра навигационное, отсчитанное от магнитного меридиана
УВ — угол   ветра
УВcр — угол   ветра   средний
ОРК — отсчет   радиокомпаса
КУР — курсовой   угол   радиостанции
КУРвых — курсовой   угол   радиостанции   выхода
КУРсл — курсовой   угол   радиостанции   следования
КУРпредв — курсовой угол радиостанции предвычисленныи
КУО — курсовой   угол   ориентира
МПО — магнитный   пеленг   ориентира
ИПР — истинный   пеленг   радиостанции
МПР — магнитный   пеленг   радиостанции
ИПС — истинный   пеленг   самолета
МПС — магнитный   пеленг   самолета
ОП(ЩДМ) — обратный   пеленг
ПП(ЩДР) — прямой   пеленг
ИП (ЩТЕ) — истинный   пеленг
А — азимут
МУК — магнитный  угол   карты
УР — угол   разворота
Увых — угол   выхода
ВУ — вертикальный   угол
β — угол   крена
σ — поправка   на   угол   схождения   меридианов
φ — широта   пункта
λ — долгота   пункта
Δλ — разность   долгот

Скорости, высоты и линейные величины
Vи — истинная   воздушная   скорость
Vпр — скорость   приборная
VпрКУС   — скорость   по   узкой стрелке   КУС
W — путевая   скорость .  
Vв — вертикальная   скорость
U — скорость   ветра
S — расстояние   между   двумя   точками
S тр — расстояние   траверза
S наб — расстояние   набора   высоты
S сн— расстояние   снижения
S р.в — расстояние   рубежа   возврата
ЛБУ — линейное   боковое   уклонение
ЛУР — линейное   упреждение   разворота
R — радиус   разворота
ГД — горизонтальная   дальность
НД — наклонная   дальность
Ни — истинная   высота
Нпр — приборная   высота
Нб — барометрическая   высота
Но — относительная   высота
Набс — абсолютная    высота
Н760 — условно   барометрическая   высота
Нподх — высота   подхода
Нотх — высота   отхода
Нсн — высота   снижения
Нэш — высота   эшелона
Н760без — безопасная высота по давлению 760 мм рт. ст.
Нприв. без — безопасная высота по приведенному минимальному давлению
Haэр, без — безопасная   высота   по   давлению   аэродрома
МБВ — минимальная   безопасная   высота
ВПР — высота   принятия   решения
Нр — абсолютная   высота   точки   рельефа
На эр — высота   аэродрома   относительно   уровня   моря
ΔНр — превышение  наивысшей  точки  относительно   аэродрома
ΔН — инструментальная   поправка   высотомера
ΔНt — методическая  температурная  поправка  высотомера
ΔНа — аэродинамическая   поправка   высотомера
ΔНб — поправка к высотомеру за барический рельеф
ΔV — инструментальная   поправка   указателя   воздушной  скорости
ΔVа — аэродинамическая поправка указателя воздушной скорости
ΔVсж — поправка  к  указателю скорости  на сжимаемость воздуха
ΔV t — методическая  температурная  поправка  указателя скорости

Время и метеорологические элементы
Т — момент   времени
t — отрезок   времени
Р0— атмосферное   давление   у   земли
Раэр — атмосферное   давление   на   аэродроме
Ри — атмосферное   давление   на   высоте
Рприв. мин — минимальное  атмосферное давление на данном участке трассы,
приведенное   к   уровню   моря
t 0 — температура   у   земли
t н — температура   на   высоте
t пр — показание   термометра   на   высоте   полета
t ср — температура   средняя
t град — вертикальный   температурный   градиент

Условные обозначения элементов схем захода на посадку

Точки
ТНС — точка    начала   снижения
ТКМ — точка   конца маневра при выходе на предпосадочную прямую
ТНР — точка    начала   разворота
ТВР — точка    выхода   из   разворота
ТГП — точка    начала   горизонтального   полета
ТВГ — точка    входа   в   глиссаду
БПРМ — место   установки ближней приводной  радиостанции  с маркером
ДПРМ — место   установки дальней приводной радиостанции с маркером

Расстояния
Sг.п— расстояние от точки начала горизонтального полета на высоте входа  в глиссаду до точки входа  в глиссаду
S1 — расстояние от ДПРМ до начала разворота на 180°
S2 — расстояние от конца первого до начала второго разворота
S3 — расстояние от траверза ДПРМ до начала третьего разворота
S4 — расстояние от конца третьего до начала четвертого разворота
Sт.в.г.— расстояние от точки входа в глиссаду до траверза ГРМ на ось ВПП
Sд — расстояние   от   ДПРМ   до   начала   ВПП
Sб — расстояние   от   БПРМ   до   начала   ВПП
Sгрм — расстояние от начала ВПП до траверза ГРМ на ось ВПП
L — ширина   прямоугольного   маршрута

Высота полета
Нисх — исходная высота начала маневра для захода на посадку
Нв.г — высота   входа   в   глиссаду
Нг.п — высота   горизонтального   полета
Нн.р — высота   начала   разворота
Нв.р — высота   выхода   из   разворота

Время полета
t1 — время полета от ДПРМ до начала разворота   на 180°   или   до
начала первого разворота на 90°
t2 — время полета от конца первого до начала второго разворота
t3 — время полета от траверза ДПРМ до начала третьего разворота
tгп — время   полета   от   ТГП   до   ТВГ
tсн — время   снижения

Углы и направления
УНГ — угол   наклона   глиссады
РУ — расчетный   угол   отворота   от   оси   ВПП
УВпос — угол   ветра   посадочный
КУРтр — курсовой угол радиостанции,  расположенной на траверзе
КУР3 — курсовой угол радиостанции в точке начала третьего разворота
КУР4 — курсовой угол радиостанции в точке начала четвертого разворота
КУРпос — курсовой угол радиостанции    при    полете    на    предпосадочной
прямой
ПМПУ — посадочный магнитный путевой угол
ОПМПУ — обратный посадочный магнитный путевой угол
MK1 — магнитный курс для полета от ДПРМ до начала   разворота на 180° или до начала первого разворота на 90°.
МК2 — магнитный курс для полета к точке второго разворота
МК3 — магнитный курс для полета к точке третьего разворота
МК4 — магнитный курс для полета к точке начала четвертого разворота
МКпос — магнитный   курс   посадки
Условные знаки, применяемые на полетных картах и схемах

Условные знаки, применяемые на полетных картах и схемах  — магнитное   склонение
Условные знаки, применяемые на полетных картах и схемах  — отметка   высоты   местности   над   уровнем   моря
Условные знаки, применяемые на полетных картах и схемах  — отметка   места самолета,  определенного  визуально с указанием времени   определения
Условные знаки, применяемые на полетных картах и схемах  — отметка места самолета, полученного прокладкой линий поло­жения на карте, а также прокладкой пути, в том числе и при помощи, автоматических средств
Условные знаки, применяемые на полетных картах и схемах  — отметка   места  самолета,  полученного с земли по запросу экапажа
Условные знаки, применяемые на полетных картах и схемах  — линия пеленга от ориентира на самолет с указанием времени
Условные знаки, применяемые на полетных картах и схемах  — линия   пеленга   от   РНТ   на   самолет
Условные знаки, применяемые на полетных картах и схемах  — астрономическая   линия   положения
Условные знаки, применяемые на полетных картах и схемах  — линия   пути
Условные знаки, применяемые на полетных картах и схемах  — время пролета ориентира,  числитель—фактическое,   знаме­натель — расчетное
Условные знаки, применяемые на полетных картах и схемах  — запись   времени   (часы,   минуты,   секунды)
Условные знаки, применяемые на полетных картах и схемах  — стационарная и подвижная приводные радиостанции
Условные знаки, применяемые на полетных картах и схемах  — стационарный и подвижный коротковолновые радиопеленга­торы
Условные знаки, применяемые на полетных картах и схемах  — стационарный  и  подвижный   ультракоротковолновые   радио­пеленгаторы
Условные знаки, применяемые на полетных картах и схемах  — наземный радиолокатор
Условные знаки, применяемые на полетных картах и схемах  — радиотехническая система ближней навигации и посадки са­молетов (РСБН)

Распечатать ..

 
Другие новости по теме:

  • Расчет элементов захода на посадку по малому прямоугольному маршруту в штил ...
  • Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэро ...
  • Основные радионавигационные элементы
  • Способы определения ортодромических путевых углов
  • Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы с ...


  • Rambler's Top100
    © 2009
    Warning: Unknown: open(/var/lib/php/session/sess_7bit2n1tntknrholqejuk94va6, O_RDWR) failed: Permission denied (13) in Unknown on line 0 Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0