www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Сокращенные обозначения и условные знаки, принятые в самолетовождении
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
return_links(); ?>
return_block_links(); ?>
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Расчет времени и места встречи самолета с темнотой или рассветом и определение продолжительности ноч ...
Когда полет начался днем, а заканчивается ночью или наоборот, необходимо знать, в какое время произойдет встреча самолета с темнотой или рассветом и какова продолжительность ночного по­лета. Время и место встречи самолета с темнотой или рассветом мож­но рассчитать с помощью НЛ-10М или по графику. Рассмотрим порядок такого расчета с помощью НЛ-10М.

» Пилотажная модель «Акро­бат»
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа. Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно корот ...

» Особенности использования самолетной радиолокационной станции РПСН-3
Радиолокационная станция РПСН-3 выпускается в нескольких вариантах. Комплектность станции зависит от типа самолета. На самолете Ан-24 для работы с РПСН-3 установлены: пульт управ­ления, пульт контроля и один индикатор. Станция имеет семь режимов работы: «Снос», «Обзор», «Дальний обзор», «Горы — Грозы», «Изо—Эхо», «Самолеты» и «Маяк». Режим «Маяк» на всех вариантах станции не использует ...

» Полет от наземного радиопеленгатора
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр ...

» Силы а моменты на роторе
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда ...

» Точность посадки
Цель этих соревнований — посадить модель в заранее обозначенное место. На расстоянии 5—6 м от стартовой линии размечают «аэродром». Это может быть круг диаметром около 1 м или лист газеты. Каждый участник после тренировочных запусков совершает зачетный полет Если после первого тура у нескольких участников модели приземлились точно на «аэродром», для определения победителя линию старта ...

» Деление данного числа на тригонометрические функции углов
Деление данного числа на тригонометрические функции углов выполняется с помощью тех же шкал, что и умножение числа на тригонометрические функции углов. Для деления заданного числа на синус или косинус угла на НЛ-10М необходимо установить риску визирки на заданное число по шкале 5, затем подвести против риски визирки значение задан­ного угла α шкалы 3 (при делении числа на синус угла) или угл ...

» Планирование занятий авиа­кружка
Еди­ной программы для авиа­кружка пионерского лагеря не существует. Да в этом и нет необходимости. Ведь объекты практической рабо­ты, ее последовательность определяются конкретными условиями — обеспечением ма­териалами и инструментом, квалификацией руководителя и даже той местностью, где рас­положен пионерлагерь. Если кругом лес и нет возмож­ности   запускать   свободнолетающие модели, то сл ...

» Обозначения
Размеры автожираСкорости и углы.

» Определение радиодевиации
Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или види­мой радиостанции.

» Условия плавной работы ротора
Плавность в работе ротора на всех полетных режимах автожира является необходимым требованием, так как неровности и тряска, передаваясь на остальные части машины, будут влиять на прочность конструкции, регулировку ротора и других деталей. За неимением достаточного эксплуатационного опыта придется пока ограничиться предварительными соображениями об условиях плавной работы ротора. Во-первых, ротор до ...

» Зависимость между ортодромическим, истинным и магнитным курсами
При полете по ортодромии в каждый отдельный момент орто-дромический курс, который выдерживается по КС или по ГПК-52, отличается от магнитного курса, измеренного магнитным компа­сом.

» Определение навигационных элементов с помощью РСБН-2
РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж мо­жет определить ветер, по которому в случае необходимости выпол­няются расчеты для обеспечения самолетовождения за преде­лами рабочей области системы.

» Контроль пути по направлению и дальности
Контроль пути по направлению и дальности может осуществляться с помощью боковых радиолокаторов путем нанесения на карту места самолета по переданным на борт самолета азимуту и дальности. Такой контроль можно осуществить и без прокладки А и Д на карте, что сокращает время на получение необходимых данных контроля пути.

» Метательные модели плане­ров
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, наб ...

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Петля Нестерова
Задача участников в этом соревнова нии — заставить модель вы­полнить петлю Нестерова Судьи, наблюдая за полетами сбоку, оценивают эту фигуру выполненную каждой моделью, в очках. Так, четкая и ровная петля, похожая на окруж ность, оценивается в 5 очков. петля с зависанием, вытянутая,— в 4 очка и т. д. Участник, набравший наибольшую сумму очков за три полета, признается победителем.

» Несложный пилотажный змей
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построи ...

» Путевые углы и способы их определения
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7). Заданным  магнитным путевым   углом   ЗМПУ   называется       угол,     заключенный между северным    направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и ...

» Скорость воздуха относительно лопасти ротора
Рассмотрим скорость воздуха относительно элемента лопасти dr, отстоящего от оси ротора на расстоянии r; лопасть имеет угловое положение ψ и угол взмаха β. Взятый элемент кроме скоростей, имеет еще угловую скорость вращения Ω вокруг оси ротора и угловую скорость махового движения  . Относительную скорость воздуха у элемента разложим на две составляющих: на радиальную, направленную по ...

» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Устранение установочной ошибки рамки радиокомпаса
Блок рамки устанавливается на самолет так, чтобы направле­ние курсовой черты, отмеченное рисками на основании рамки, сов­пало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет рав­на нулю. Установочной ошибкой рамки радиокомпаса на­зывается угол, на который отклоняется стрелка указателя от нуле­вого деления шкалы при КУР = 0°. Э ...

» Классификация авиационных карт по назначению
По своему назначению карты, применяемые в гражданской - авиации, делятся: на полетные, применяемые для самолетовождения по трас­сам и маршрутам в районе полетов; на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астроно­мических средств; на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения м ...

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем
Радиотехнические средства среди других средств самолетово­ждения занимают одно из важнейших мест и находят самое ши­рокое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самоле­товождение. Радиотехнические средства самолетовождения по месту рас­положения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: при­в ...

» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости
Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструмен­тальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на из­менение плотности воздуха.

» Расчет пройденного расстояния, времени полета и путевой скорости
Пройденное   расстояние определяется   по формуле S = Wt, где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек). Для определения пройденного расстояния на НЛ-10М необходи­мо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 и ...

» Списывание девиации на самолетах с ГТД
На самолетах с ГТД датчики дистанционных компасов установ­лены в местах, где, как показали результаты исследований, дейст­вие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА из­дал специальное указание, согласно которому:

» Ручка управления с фик­сатором
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее ос­воить этот прием, применяют ручку управления, которая фиксируется на предплечье не­большим  хомутом   (рис.  67).

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Сокращенные обозначения и условные знаки, принятые в самолетовождении
Самолетовождение  |   Просмотров: 35900  
 
Точки и линии
МС — место   самолета
ИПМ — исходный   пункт   маршрута
ППМ — поворотный   пункт   маршрута
КО — контрольный   ориентир
КЭ — контрольный   этап
ЛЗП — линия   заданного   пути
ЛФП — линия фактического пути
АЛП — астрономическая   линия   положения
РНТ — радионавигационная   точка
ОПРС — отдельная   приводная   радиостанция
РСБН — радиотехническая   система   ближней   навигации

Направления, углы и координаты
С — север
Ю — юг
В — восток
3 — запад
Си — северное   направление   истинного   меридиана
См — северное   направление   магнитного   меридиана
Ск — северное   направление   компасного   меридиана
Си.о — северное направление истинного опорного меридиана
См.о — северное направление магнитного опорного меридиана
ЗИПУ — заданный   истинный   путевой   угол
ЗМПУ — заданный   магнитный   путевой   угол
ФИПУ — фактический   истинный   путевой   угол
ФМПУ — фактический   магнитный   путевой   угол
ОЗИПУ — ортодромический заданный  истинный путевой угол
ОЗМПУ — ортодромический  заданный  магнитный  путевой  угол
ИК — истинный   курс
МК — магнитный   курс
КК — компасный   курс
МКр — магнитный   курс   расчетный
МКср — магнитный   курс   средний
МКсл — магнитный   курс   следования
МКвых — магнитный   курс   выхода   на ЛЗП
ОИК — ортодромический   истинный   курс
ОМК — ортодромический   магнитный   курс
Δк — девиация   компаса
Δр — радиодевиация
Δм — магнитное   склонение
Δ — вариация
УС — угол   сноса
УСр — угол   сноса   расчетный
УСф — угол сноса фактический
БУ — боковое   уклонение   в   градусах
ДП — дополнительная   поправка   в   курс
ПК — поправка   в   курс
δ — направление  ветра   метеорологическое, отсчитанное от магнит­ного меридиана
НВ — направление ветра навигационное, отсчитанное от магнитного меридиана
УВ — угол   ветра
УВcр — угол   ветра   средний
ОРК — отсчет   радиокомпаса
КУР — курсовой   угол   радиостанции
КУРвых — курсовой   угол   радиостанции   выхода
КУРсл — курсовой   угол   радиостанции   следования
КУРпредв — курсовой угол радиостанции предвычисленныи
КУО — курсовой   угол   ориентира
МПО — магнитный   пеленг   ориентира
ИПР — истинный   пеленг   радиостанции
МПР — магнитный   пеленг   радиостанции
ИПС — истинный   пеленг   самолета
МПС — магнитный   пеленг   самолета
ОП(ЩДМ) — обратный   пеленг
ПП(ЩДР) — прямой   пеленг
ИП (ЩТЕ) — истинный   пеленг
А — азимут
МУК — магнитный  угол   карты
УР — угол   разворота
Увых — угол   выхода
ВУ — вертикальный   угол
β — угол   крена
σ — поправка   на   угол   схождения   меридианов
φ — широта   пункта
λ — долгота   пункта
Δλ — разность   долгот

Скорости, высоты и линейные величины
Vи — истинная   воздушная   скорость
Vпр — скорость   приборная
VпрКУС   — скорость   по   узкой стрелке   КУС
W — путевая   скорость .  
Vв — вертикальная   скорость
U — скорость   ветра
S — расстояние   между   двумя   точками
S тр — расстояние   траверза
S наб — расстояние   набора   высоты
S сн— расстояние   снижения
S р.в — расстояние   рубежа   возврата
ЛБУ — линейное   боковое   уклонение
ЛУР — линейное   упреждение   разворота
R — радиус   разворота
ГД — горизонтальная   дальность
НД — наклонная   дальность
Ни — истинная   высота
Нпр — приборная   высота
Нб — барометрическая   высота
Но — относительная   высота
Набс — абсолютная    высота
Н760 — условно   барометрическая   высота
Нподх — высота   подхода
Нотх — высота   отхода
Нсн — высота   снижения
Нэш — высота   эшелона
Н760без — безопасная высота по давлению 760 мм рт. ст.
Нприв. без — безопасная высота по приведенному минимальному давлению
Haэр, без — безопасная   высота   по   давлению   аэродрома
МБВ — минимальная   безопасная   высота
ВПР — высота   принятия   решения
Нр — абсолютная   высота   точки   рельефа
На эр — высота   аэродрома   относительно   уровня   моря
ΔНр — превышение  наивысшей  точки  относительно   аэродрома
ΔН — инструментальная   поправка   высотомера
ΔНt — методическая  температурная  поправка  высотомера
ΔНа — аэродинамическая   поправка   высотомера
ΔНб — поправка к высотомеру за барический рельеф
ΔV — инструментальная   поправка   указателя   воздушной  скорости
ΔVа — аэродинамическая поправка указателя воздушной скорости
ΔVсж — поправка  к  указателю скорости  на сжимаемость воздуха
ΔV t — методическая  температурная  поправка  указателя скорости

Время и метеорологические элементы
Т — момент   времени
t — отрезок   времени
Р0— атмосферное   давление   у   земли
Раэр — атмосферное   давление   на   аэродроме
Ри — атмосферное   давление   на   высоте
Рприв. мин — минимальное  атмосферное давление на данном участке трассы,
приведенное   к   уровню   моря
t 0 — температура   у   земли
t н — температура   на   высоте
t пр — показание   термометра   на   высоте   полета
t ср — температура   средняя
t град — вертикальный   температурный   градиент

Условные обозначения элементов схем захода на посадку

Точки
ТНС — точка    начала   снижения
ТКМ — точка   конца маневра при выходе на предпосадочную прямую
ТНР — точка    начала   разворота
ТВР — точка    выхода   из   разворота
ТГП — точка    начала   горизонтального   полета
ТВГ — точка    входа   в   глиссаду
БПРМ — место   установки ближней приводной  радиостанции  с маркером
ДПРМ — место   установки дальней приводной радиостанции с маркером

Расстояния
Sг.п— расстояние от точки начала горизонтального полета на высоте входа  в глиссаду до точки входа  в глиссаду
S1 — расстояние от ДПРМ до начала разворота на 180°
S2 — расстояние от конца первого до начала второго разворота
S3 — расстояние от траверза ДПРМ до начала третьего разворота
S4 — расстояние от конца третьего до начала четвертого разворота
Sт.в.г.— расстояние от точки входа в глиссаду до траверза ГРМ на ось ВПП
Sд — расстояние   от   ДПРМ   до   начала   ВПП
Sб — расстояние   от   БПРМ   до   начала   ВПП
Sгрм — расстояние от начала ВПП до траверза ГРМ на ось ВПП
L — ширина   прямоугольного   маршрута

Высота полета
Нисх — исходная высота начала маневра для захода на посадку
Нв.г — высота   входа   в   глиссаду
Нг.п — высота   горизонтального   полета
Нн.р — высота   начала   разворота
Нв.р — высота   выхода   из   разворота

Время полета
t1 — время полета от ДПРМ до начала разворота   на 180°   или   до
начала первого разворота на 90°
t2 — время полета от конца первого до начала второго разворота
t3 — время полета от траверза ДПРМ до начала третьего разворота
tгп — время   полета   от   ТГП   до   ТВГ
tсн — время   снижения

Углы и направления
УНГ — угол   наклона   глиссады
РУ — расчетный   угол   отворота   от   оси   ВПП
УВпос — угол   ветра   посадочный
КУРтр — курсовой угол радиостанции,  расположенной на траверзе
КУР3 — курсовой угол радиостанции в точке начала третьего разворота
КУР4 — курсовой угол радиостанции в точке начала четвертого разворота
КУРпос — курсовой угол радиостанции    при    полете    на    предпосадочной
прямой
ПМПУ — посадочный магнитный путевой угол
ОПМПУ — обратный посадочный магнитный путевой угол
MK1 — магнитный курс для полета от ДПРМ до начала   разворота на 180° или до начала первого разворота на 90°.
МК2 — магнитный курс для полета к точке второго разворота
МК3 — магнитный курс для полета к точке третьего разворота
МК4 — магнитный курс для полета к точке начала четвертого разворота
МКпос — магнитный   курс   посадки
Условные знаки, применяемые на полетных картах и схемах

Условные знаки, применяемые на полетных картах и схемах  — магнитное   склонение
Условные знаки, применяемые на полетных картах и схемах  — отметка   высоты   местности   над   уровнем   моря
Условные знаки, применяемые на полетных картах и схемах  — отметка   места самолета,  определенного  визуально с указанием времени   определения
Условные знаки, применяемые на полетных картах и схемах  — отметка места самолета, полученного прокладкой линий поло­жения на карте, а также прокладкой пути, в том числе и при помощи, автоматических средств
Условные знаки, применяемые на полетных картах и схемах  — отметка   места  самолета,  полученного с земли по запросу экапажа
Условные знаки, применяемые на полетных картах и схемах  — линия пеленга от ориентира на самолет с указанием времени
Условные знаки, применяемые на полетных картах и схемах  — линия   пеленга   от   РНТ   на   самолет
Условные знаки, применяемые на полетных картах и схемах  — астрономическая   линия   положения
Условные знаки, применяемые на полетных картах и схемах  — линия   пути
Условные знаки, применяемые на полетных картах и схемах  — время пролета ориентира,  числитель—фактическое,   знаме­натель — расчетное
Условные знаки, применяемые на полетных картах и схемах  — запись   времени   (часы,   минуты,   секунды)
Условные знаки, применяемые на полетных картах и схемах  — стационарная и подвижная приводные радиостанции
Условные знаки, применяемые на полетных картах и схемах  — стационарный и подвижный коротковолновые радиопеленга­торы
Условные знаки, применяемые на полетных картах и схемах  — стационарный  и  подвижный   ультракоротковолновые   радио­пеленгаторы
Условные знаки, применяемые на полетных картах и схемах  — наземный радиолокатор
Условные знаки, применяемые на полетных картах и схемах  — радиотехническая система ближней навигации и посадки са­молетов (РСБН)

Распечатать ..

 
Другие новости по теме:

  • Расчет элементов захода на посадку по малому прямоугольному маршруту в штил ...
  • Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэро ...
  • Основные радионавигационные элементы
  • Способы определения ортодромических путевых углов
  • Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы с ...


  • Rambler's Top100
    © 2009
    Warning: Unknown: open(/var/lib/php/session/sess_dcv5l09e5b3ggtg9qbg8vdkm14, O_RDWR) failed: Permission denied (13) in Unknown on line 0 Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0