Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /var/www/fastuser/data/www/livit.ru/engine/classes/mysqli.class.php on line 162
Модели вертолетов » Летательные аппараты - Авиационный моделизм и самолетовождение
» Схематическая модель планера разработана алма-атинскими авиамоделистами Схематическая модель планера (рис. 23) разработана алма-атинскими авиамоделистами. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный паритель фитильным приспособлением для принудительной посадки. Постройку такой «схематички» начинают с крыла. Прежде всего заготовки кромок изготавливают с помощью специально изготовленного приспособлени ...
» Метательный планер «Старт» Метательный планер «Старт» (рис. 22) представляет собой дальнейшее развитие предыдущих моделей. У него плавные очертания концевых частей у крыла, стабилизатора и Киля. Основной материал — пенопласт ПС-4-40 и клей ПВА. Основа фюзеляжа — две сосновые или липовые рейки длиной 450 мм и сечением 6x2 мм. Между ними вклеивают пластину с наибольшим сечением 10X6 мм ...
» Модель воздушного боя «Юниор» Кордовая модель воздушного боя «Юниор» (рис. 38) разработана под двигатель с рабочим объемом 1,5 см3. Выполнена она по схеме «летающее крыло». Основной силовой элемент модели — кромка-лонжерон. Его выполняют следующим образом: из липы или сосны выстругивают рейку сечением 20x3 мм и длиной 750 мм, к боковым сторонам которой приклеивают еще три рейки сечением 10х 3 мм: с передней &mdas ...
» Пенопласт в авиамоделизме В конструкции многих моделей, предлагаемых в этой книге, применяют пенопласт. Поэтому логичным будет предложить некоторые практические советы по работе с ним. Пенопласт — вспененный полистирол нли полихлорвинил, обладает низкой плотностью и большими возможностями. Для изготовления авиамоделей применяют в основном пенопласт марки ПС (полистирольный), ПХВ (полихлорвиниловый) и упаковоч ...
» Пилотажная модель «Акробат»
Пилотажная модель «Акробат» (рис. 35), разработанная московскими авиамоделистами, обладает хорошей управ^ ляемостью и высокой устойчивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери скорости на отдельных участках фигур высшего пилотажа. Фюзеляж — непривычной для современных «пилотажек» конструкции — с чрезвычайно корот ...
» Штурманский контроль готовности экипажа к полету Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсутствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету контролируют штурманы авиаэскадрилий (авиаотрядов) и руководитель полетов. Флаг-штурман летного учебного заведения ...
» Шкалы навигационной линейки и их назначение Навигационная линейка имеет не равномерные шкалы, а логарифмические. При решении задач с помощью НЛ-10М используется одновременно две, а иногда и больше шкал, которые называются смежными.
» Самолетовождение с использованием навигационной системы «Трасса» - Назначение системы и задачи, ре ... Навигационная система «Трасса» предназначена для непрерывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямоугольной системе координат (дальность и линейное боковое уклонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является измеритель путевой скорости и угла сноса, исп ...
» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ... Радиотехническая система ближней навигации РСБН-2 предназначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением самолетов с земли. Появление этой системы явилось большим достижением на пути автоматизации полета, обеспечения высокой точности самолетовождения и безопасности полетов.
» Магнитные силы, действующие на стрелку компаса. Формула девиации На стрелку компаса, установленного на самолете, в горизонтальной плоскости одновременно оказывают действие шесть магнитных сил. 1. Сила λH, действующая в направлении магнитного меридиана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо, намагниченное земным магнетизмом. Направление этой силы не зависит от к ...
» Поликонические проекции По принципу построения поликонические проекции незначительно отличаются от конических. Они являются дальнейшим усовершенствованием конических проекций. В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к параллелям или секущих земной шар по заданным параллелям. На поверхность каждого конуса переносится небольшой шаровой пояс земной ...
» Особенности самолетовождения над безориентирной местностью Условия самолетовождения над безориентирной местностью. Безориентирной называется местность с однообразным фоном. Это — тайга, степь, пустыня, тундра, большие лесные массивы, а также малообследованные районы, для которых нет точных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:
» Модель вертолета «Пэнни» Модель вертолета «Пэнни» (рис. 54) разработал американский авиамоделист Д. Буркхем. Этот миниатюрный вертолет с резиновым мотором снабжен хвостовым винтом и Имеет автомат стабилизации. Основой модели является силовая рейка из сосны длиной 114 мм и сечением 5x5 мм. Сбоку приклеивают пластину из пенопласта толщиной 5 мм и закругляют по виду сбоку; получается своеобразный корпус модели. Сверху ...
» Работа с картой Определение координат пункта по карте. В практике самолетовождения приходится производить некоторые расчеты по географическим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1) провести через заданный пункт отрезки прямых, параллельных ближайшей параллели и ближайшему меридиану; 2) в точках пересеч ...
» Воздушный шар (аэростат) Воздушный шар (аэростат) — летательный аппарат легче воздуха, полет которого объясняется законом Архимеда: сила, выталкивающая погруженное в жидкость (или газ) тело, равна весу жидкости (или газа) в объеме этого тела. Данная сила направлена вертикально вверх и приложена к центру объема погруженной части тела. Иными словами, аэростат поднимается вверх (всплывает) благодаря подъемной си ...
» Кордовая модель самолета «Универсал» Универсальную кордовую модель самолета (рис. 42) разработали юные техники Тимирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневренность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пилотажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изго ...
» Определение места самолета Место самолета в полете определяется в целях контроля пути, определения навигационных элементов и восстановления потерянной ориентировки. С помощью радиокомпаса место самолета может быть определено по одной и двум радиостанциям. Определение места самолета по одной радиостанции двухкратным пеленгованием и прокладкой пеленгов на карте. Для применения данного способа необходимо использовать боковые ...
» Сущность истинного пеленга (ИП) и взаимозависимость пеленгов Для контроля пути по дальности и определения места самолета запрашиваются истинные пеленги. Запрос пеленгов в телеграфном режиме осуществляется кодовым выражением ЩТЕ, в телефонном режиме — словами «Дайте истинный пеленг». Истинным пеленгом (ЩТЕ) называется угол, заключенный между северным направлением истинного меридиана, проходящего через радиопеленгатор, и ортодромическим направлением на ...
» Определение радиодевиации Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или видимой радиостанции.
» Определение значений тригонометрических функций углов Значения синуса и косинуса данного угла α на НЛ-10М определяются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на деление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...
» Пеленг и курсовой угол ориентира Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного меридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часовой стрелки от 0 до 360°.
» Ракета— летательный аппарат тяжелее воздуха Ракета— летательный аппарат тяжелее воздуха, подъемная сила которого возникает по принципу реактивного движения. Этот принцип заключается в отталкивании ракеты от массы струи газов, образованных при сгорании топлива и истекающих из двигателя. Своим рождением первые ракеты обязаны изобретению пороха. Но в те далекие времена ракеты служили лишь для фейерверков. Потом они нашли применение ...
» Способы измерения высоты полета Основными способами измерения высоты полета являются барометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно изменяющегося с высотой. Барометрический высотомер представляет собой обыкновенный барометр, у которого вместо шкалы давлений поставлена шкала высот. Такой высотомер определяет высоту полета самолета к ...
» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструментальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на изменение плотности воздуха.
» Бумажная модель планера «ДОСААФ» Для изготовления модели планера «ДОСААФ» (рис. 18) кроме бумаги, ножниц, линейки и карандаша понадобится еще и клей. Лучше всего применять клей ПВА, а бумагу — из альбомов для рисования. С рисунка по клеткам переносят форму фюзеляжа на сложенную вдвое бумажную заготовку и вырезают его. Затем таким же образом вырезают крыло, груз, лонжерон и киль. На шаблонах частей стрелкой указано ...
» Навигационное использование системы «Трасса»
Система «Трасса» может быть использована в следующих режимах: «ДИСС», «Память» и автономный режим работы навигационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а) Перед вылетом: 1. Установить на щитке управления левый переключатель в положение «Выключено», а правый — в положение «Суша» (при полете над водной пове ...
» Пилотажный змей «Акробат» Пилотажный змей «Акробат» (рис. 10) сконструировал москвич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлиненной центральной рейкой. Это сделано для повышения продольной устойчивости. Угол между боковыми рейками-лонжеронами составляет 156° и является оптимальным. Поперечную устойчивость обеспечивают приподнятые относительно цент ...
» Расчет времени и места встречи самолетов, летящих на встречных курсах Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самолетами контрольных ориентиров. Время сближения самолетов tсбл= S'/ W1 + W2
» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Географическими координатами являются широта и долгота места (рис. 1.3).
» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется относительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса самолета применяются различные способы отсчета ортодромических путевых углов и курсов самолета, выбор которы ...
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несущим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без разбега, зависать в воздухе, лететь в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппаратов. Задолго до официально признанных изобретателей вертолета великий русский ученый построил и испытал такой аппарат в России. Правда, еще в 1475 году гениальный флорентиец Леонардо да Винчи писал о возможности постройки аппарата с винтом.
В практике авиамоделизма наибольшее распространение получили вертолеты одновинтовой схемы. Простейшая модель вертолетов лишь по принципу полета напоминает прототип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким винтом укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.
Модель вертолета «Белка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние лопасти закрепляют на раме, служащей одновременно фюзеляжем. Раму изготовляют из двух липовых пластин размером 220 Х 10 Х 1 мм, верхней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две других посредством кронштейнов крепят к раме. Материалом для изготовления крючка и вала служит стальная проволока диаметром 0,5 мм. Для уменьшения трения на вал надевают шайбу.
Модель вертолета чешских авиамоделистов (рис. 53) напоминает настоящий геликоптер. Фюзеляж заодно с килем вырезают из пластины пенопласта толщиной 5 мм и по периметру фигуры окантовывают липовыми рейками сечением 5X1 мм. В качестве силовой балки используют сосновую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшипник винта, а с другого привязывают крючок из проволоки ОВС диаметром 0,7 мм. Крепят силовую балку сбоку фюзеляжа. Лопасть одноло-пастного несущего винта делают из двух слоев чертежной бумаги и клеют к ступице, через которую проходит вал ротора, выгнутый из стальной проволоки диаметром 0,8 мм. Он же является одновременно и штангой противовеса, который напаивают на свободный конец вала.
Модель вертолета «Пэнни» (рис. 54) разработал американский авиамоделист Д. Буркхем. Этот миниатюрный вертолет с резиновым мотором снабжен хвостовым винтом и Имеет автомат стабилизации. Основой модели является силовая рейка из сосны длиной 114 мм и сечением 5x5 мм. Сбоку приклеивают пластину из пенопласта толщиной 5 мм и закругляют по виду сбоку; получается своеобразный корпус модели. Сверху крепят хвостовую балку — сосновую рейку длиной 280 мм переменного сечения. Снизу приклеивают рейку из липы сечением 5X5 мм, предварительно привязав нитками две стойки шасси, выгнутые из проволоки диаметром 0,8 мм, и крючок резиномотора. К стойкам для копийности крепят две посадочные лыжи.
Warning: Unknown: open(/var/lib/php/session/sess_vkfe043ckkqdcqjlhe91qirsm5, O_RDWR) failed: Permission denied (13) in Unknown on line 0
Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0