www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Помещение для занятий авиамоделизмом
Для работы авиамодельного кружка пионерского лагеря необходимо светлое помеще­ние — мастерская площадью 40—45 м2 для размещения 15—20 рабочих мест. Единой схемы организации мастерской не существует, все опреде­ляется возможностями пионер­лагеря. А они не такие уж и большие. Поэтому на прак­тике площадь мастерской обыч­но не превышает 30 м2. Это, конечно, несколько затрудняет рабо ...

» Пилотажный змей «Акробат»
Пилотажный змей «Акробат» (рис. 10) сконструировал моск­вич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлинен­ной центральной рейкой. Это сделано для повышения про­дольной устойчивости. Угол между боковыми рейками-лон­жеронами составляет 156° и является оптимальным. Попе­речную устойчивость обеспечи­вают приподнятые относитель­но цент ...

» Полет на радиопеленгатор
При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашиваются в телефонном режиме обратные пеленги (ОП) словами: «Дайте обратный пеленг».При использовании KB радиопеленгаторов для контроля пути по направлению запрашиваются пеленги в телеграфном режиме кодовым выражением ЩДМ, которое означает: «Сообщите магнит­ный курс, с которым я должен направиться к вам при отсутст­вии в ...

» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется отно­сительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса само­лета применяются различные способы отсчета ортодромических пу­тевых углов и курсов самолета, выбор которы ...

» Умножение данного числа на тригонометрические функции углов
Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчи­тать на шкале 5 искомое произведение числа на синус угла α, a против угла 90 ...

» Выполнение радиодевиационных работ
Радиодевиационные работы проводятся штурманом с целью определения, компенсации радиодевиации и составления графика остаточной радиодевиации в следующих случаях: 1)  при установке на самолет, нового радиокомпаса или отдель­ных его блоков; 2)   после выполнения регламентных работ, при которых заме­нялись отдельные блоки радиокомпаса; 3)  при обнаружении в полете ошибок в показаниях указателя курсовы ...

» Особенности самолетовождения в условиях грозовой деятельности
Условия   самолетовождения    в   зоне  грозовой    деятельности. Грозы являются опасными явлениями погоды для авиации. Опас­ность полетов в условиях грозовой деятельности связана с силь­ной турбулентностью воздуха и возможностью попадания мол­нии в самолет, что может вызвать его повреждение, поражение экипажа и вывод из строя оборудования. Наиболее опасными являются фронтальные грозы, которые ох­ ...

» Предполетная проверка НИ-50БМ
Для проверки НИ-50БМ перед полетом необходимо: 1.  Включить электропитание   прибора   по  переменному  и  по­стоянному току. 2.  Включить и подготовить к работе ГИК.    Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3.  Установить на автомате курса и задатчике ветра МУК=МК самолета. 4.  Ввести в задатчик ветра направлен ...

» Полет от наземного радиопеленгатора
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр ...

» Сборные таблицы, подбор и склеивание необходимых листов карт
Сборные таблицы предназначены для подбора нужных листов карт и быстрого определения их номенклатуры. Они представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов карт одного, а иногда двух-трех масштабов. Для облегчения выбора нужных листов карт на сборных таблицах указаны названия крупных городов. Сборные таблицы издаются на отдельных листах. ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Определение путевой скорости, пройденного расстояния и времени полета подсчетом в уме
Путевая скорость может быть определена подсчетом в уме следующими способами: 1.   Путем определения расстояния, проходимого самолетом за одну минуту, с последующим расчетом путевой скорости. Пример. S=88 км; t=11 мин. Определить путевую скорость. Решение.    1. Находим путь самолета, проходимый    за    одну    минуту: S=88:11=6 км. 2.   Определяем путевую скорость самолета:  W==8—60=480 км/ ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Особенности самолетовождения над безориентирной местностью
Условия самолетовождения    над    безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

» Вывод самолета в заданный район
Для вывода самолета в заданный район необходимо: 1.  Соединить прямой линией место самолета с пунктом, на ко­торый необходимо выйти. 2.  Измерить по карте ЗМПУ и расстояние до заданного пунк­та (рис. 19.7). 3.  Стрелки счетчика координат установить на нуль. 4.  На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5.  На задатчике ветра установить навигационное направление ветра и его скорост ...

» Расчет максимальной дальности рубежа возврата на аэродром вылета и на запасные аэродромы
Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может слу ...

» Классификация авиационных карт по назначению
По своему назначению карты, применяемые в гражданской - авиации, делятся: на полетные, применяемые для самолетовождения по трас­сам и маршрутам в районе полетов; на бортовые, применяемые в полете для определения места самолета при помощи использования радиотехнических и астроно­мических средств; на специальные (карты магнитных склонений, часовых поясов, бортовые карты неба, карты для определения м ...

» Способы измерения высоты полета
Основными способами измерения высоты полета являются ба­рометрический и радиотехнический. Барометрический способ измерения высоты основан на принципе измерения атмосферного давления, закономерно из­меняющегося с высотой. Барометрический высотомер представля­ет собой обыкновенный барометр, у которого вместо шкалы дав­лений поставлена шкала высот. Такой высотомер определяет вы­соту полета самолета к ...

» Единицы измерения расстояний
В самолетовождении основными единицами измерения расстоя­ний являются километр и метр. В некоторых случаях в качестве единицы измерения расстояния применяется морская миля (ММ). В США и Англии для измерения расстояний, кроме морской мили, применяется английская статутная миля (AM) и фут. Морская ми­ля представляет собой длину дуги меридиана в 1'.

» Методика проведения занятий
В пионерском лагере из-за непродолжительной ра­боты кружка важное значение приобретает организация и со­держание каждого занятия. Вопросы методики проведе­ния занятий, их организацион­ная четкость во многом опре­деляются опытом руководи­теля. Большую часть руководи­телей кружков в пионерских лагерях составляют энтузи­асты технического творчества, слабым местом которых явля­ется недостаточное знани ...

» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира
Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...

» Движение лопастей
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высот ...
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

» Простейший вертолет — «муха»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

» Штурманский контроль готовности экипажа к полету
Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсут­ствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету кон­тролируют штурманы авиаэскадрилий (авиаотрядов) и руководи­тель полетов. Флаг-штурман летного учебного заведения ...

» Назначение и устройство девиационного пеленгатора
Девиационный пеленгатор предназначен для определения маг­нитных пеленгов ориентиров, фактического МК самолета и уста­новки последнего на заданный МК. Устройство пеленгатора пока­зано на рис. 3. 15. Визирная рамка 3 состоит из глазного (с про­резью) и предметного (с нитью) диоптров. Она может вращаться вокруг вертикальной оси относительно азимутального лимба 1 или быть застопоренной. С помощью ин ...

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Контроль и исправление пути
При выполнении полета вследствие изменения ветра, неточного выдерживания заданного режима полета и ошибок в навигацион­ных измерениях и расчетах самолет может уклониться от ЛЗП и выйти на заданные пункты маршрута в неназначенное время. В целях точного следования по заданной трассе (маршруту) и точного по времени выхода на контрольные ориентиры, поворот­ные пункты и аэродром посадки, экипаж в проце ...

» Требования безопасности самолетовождения
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 

 Авиационный моделизм
Строим сами летающие модели  |    Просмотров: 6959  
 
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно.
Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамодели, делая первый шаг в тех­ническом творчестве. И очень часто, начав с модели, многие на всю жизнь приобщаются к авиации и авиационной технике.
Кто не знает таких выдающихся советских авиа­конструкторов, как А. Н. Туполев, О. К. Антонов, С. В. Ильюшин, А. С. Яковлев. Свой путь в авиацию прославленные конструкторы начали еще в детстве с постройки и запуска простейших летающих моделей.

Читать дальше ..

 Первые воздушные змеи
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 6007  
 
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю.
Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминают ни змею, ни дракона.
Первое подтверждение об ис­пользовании воздушных змеев в военном деле относится к 906 году. Киевский князь Олег при осаде Царьграда применил воз­душные змеи, которым была придана форма вооруженных всадников. Непосредственного Урона неприятелю они не причи­няли и служили только для устрашения.
Затем долгое время воздуш­ные змеи не находили практи­ческого применения. И лишь к концу XVIII века они стали служить науке.

Читать дальше ..

 Запуск воздушных змеев
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 5382  
 
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых.
В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по   всей   Польше   проводится праздник воздушного змея, в котором принимают участие мо­лодые конструкторы этого древ­него   летательного   аппарата. Воздушный змей — это прос­тейший  летательный   аппарат тяжелее   воздуха.   Он   может подняться-только в ветреную погоду. Встречный ветер оказы­вает на змей сильное давле­ние, стремясь снести его.  Но змей привязан под определен­ным углом атаки к лееру. Благо­даря углу атаки создается подъ­емная сила, которая зависит от его величины, скорости ветра и площади несущей поверхности. Воздушные змеи бывают двух видов: плоские (простейшие) и коробчатые.   Необходимая де­таль   первых — хвост,   вторые успешно летают без него. Карманный       змей-малыш (рис 1) изготовлен из совре­менных материалов. Он крайне прост, складывается до разме-пов, позволяющих убрать его в карман куртки, благодаря очень небольшой массе способен «поймать» самый слабый ветер. И если уж змей хорошо летает даже в городском дворе, то на открытой поляне, на лугу он сможет поставить рекорды вы­соты.

Читать дальше ..

 Змей-дельтаплан
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 8544  
 
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани.
Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся большом треугольнике находят середи­ну. С двух сторон треугольника (катетов) ткань подгибают на 30 мм и прошивают на швей­ной машинке. Из остатка ткани выкраивают киль с припуска­ми по 20 мм на швы с двух меньших сторон треугольника, подгибают материал на этих сторонах на 15 мм.

Читать дальше ..

 Змей-вертушка
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 8199  
 
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет крутиться, появится и эффект образования подъемной силы. Благодаря созданию подъемной силы и летает змей-вертушка.

Читать дальше ..

 Коробчатый воздушный змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 9443  
 
Коробчатый змей (рис. 4). Для его изготовления необхо­димы три основные рейки диа­метром 4,5 мм и длиной 690 мм и 12 коротких реек сечением 3X3 мм и длиной 230 мм. Ко­роткие рейки заостряют и встав­ляют на клею в основные под углом 60°. Оклеивают змей папиросной бумагой. Масса его 55—60 г.

Читать дальше ..

 Прямоугольный коробчатый змей Л. Харграва
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 7769  
 
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью.
Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной 220 мм. Кроме того, нужен какой-либо клей (ПВА, БФ-2, БФ-4), 20 м крепкой нитки и 0,5 м стальной проволоки диа­метром около 0,6 мм. Из бумаги вырезают выкройку для каждой из полос по размерам, приве­денным на рисунке.

Читать дальше ..

 Ромбический коробчатый змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 8069  
 
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами.
Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые трубки диаметром 12—15 мм или угол­ки сечением 15Х 15 мм. Всего понадобится четыре рейки дли­ной 1,6 м, одна 2 м, две 1,2 м и две 0,8 м. Материал кроят так, как показано на рис. 6, полотни­ща сшивают. Для открылков готовят выкройку  из  плотной бумаги в натуральную величи­ну, чтобы они получались оди­наковыми. По периметру полотен и открылков вшивают тонкий шпагат и в указанных точках привязывают к нему «хвостики» для крепления на каркасе. Места вокруг «хвостиков» дополнительно усиливают тканью, как показано на рис. 6 (узел Г).

Читать дальше ..

 Запуск змеев
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 5433  
 
Как было ска­зано ранее, воздушные змеи запускают на тонком, прочном шнуре-леере. Особенно внима­тельно надо отнестись к выбо­ру места запуска.
Необходимым условием  полета змея является ветер. Змеи различных размеров летают приопределенной скорости  ветра. Большой и тяжелый змей нав­ряд ли удастся запустить при слабом ветре, когда уверенно может   держаться   в   воздухе змей, изображенный на рис. 4.

Читать дальше ..

 Игры и соревнования. Воздушный «почтальон»
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 6604  
 
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема.
Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх и там так и остается — опуститься вниз не может.

Читать дальше ..

 Парусная тележка
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 5841  
 
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 мм, изгибают буквой П и вставляют в замок, другой, продев через скобу, вы­гибают полукольцом.
Каркас паруса представляет собой две перекрещивающиеся рейки: горизонтальная длиной 500 мм и сечением 6X6 мм, вертикальная длиной 700 мм и сечением 8X6 мм. Концы реек стягивают прочной ниткой и оклеивают бумагой или легкой тканью. Вертикальную рейку паруса шарнирно крепят к осно­ванию тележки. Из суровых ниток делают растяжку и при­крепляют ее к концам горизон­тальной рейки. Длину растяж­ки выбирают так, чтобы угол установки паруса к основанию был около 80 °.

Читать дальше ..

 Несложный пилотажный змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 6836  
 
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построить несложный пилотажный змей (рис 9).
 

Читать дальше ..

 Пилотажный змей «Акробат»
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 9239  
 
Пилотажный змей «Акробат» (рис. 10) сконструировал моск­вич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлинен­ной центральной рейкой. Это сделано для повышения про­дольной устойчивости. Угол между боковыми рейками-лон­жеронами составляет 156° и является оптимальным. Попе­речную устойчивость обеспечи­вают приподнятые относитель­но центральной рейки концы боковых лонжеронов.
Своеобразным стабилизато­ром является хвост змея, дли­на которого составляет 6 м. Если ленту, предназначенную служить в качестве хвоста, сделать   короче,   аппарат   поте­ряет продольную устойчивость, длиннее — существенно   ухудшится управляемость.

Читать дальше ..

 Тепловой воздушный шар
Строим сами летающие модели » Воздушные шары  |    Просмотров: 7336  
 
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально.
Одними из первых, кто хотел использовать теплый воздух для полетов, были французы: бра­тья Жозеф и Этьен Монгольфье. 5 июня 1783 года в Видалонлез-Анноне они испытали свой первый аппарат. Их шар диаметром около 12 м, напол­ненный горячим дымом, легко поднялся вверх, изумив этим публику. Пассажиров у того первенца не было. Братья стре­мились к следующему шагу. И 19 сентября они подняли на воздушном шаре первых «ис­пытателей»: петуха, утку и ба­рана. С тех пор тепловые воздушные шары стали назы­вать монгольфьерами.

Читать дальше ..

 Воздушный шар (аэро­стат)
Строим сами летающие модели » Воздушные шары  |    Просмотров: 6148  
 
Воздушный шар (аэро­стат) — летательный аппарат легче воздуха, полет которого объясняется законом Архиме­да: сила, выталкивающая по­груженное в жидкость (или газ) тело, равна весу жидкости (или газа) в объеме этого тела. Данная сила направлена верти­кально вверх и приложена к центру объема погруженной ча­сти тела. Иными словами, аэро­стат поднимается вверх (всплы­вает) благодаря подъемной си­ле газа, заключенного в обо­лочку.

Читать дальше ..

 Дирижабли
Строим сами летающие модели » Воздушные шары  |    Просмотров: 7548  
 
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого дирижабля включает   четыре-пять  двига­телей.
Как и самолет, дирижабль имеет оперение с рулями высоты и направления, но по сравне­нию с самолетом это более ран­ний вид воздушного транспор­та.

Читать дальше ..

 Постройка шара-монгольфье­ра
Строим сами летающие модели » Воздушные шары  |    Просмотров: 10628  
 
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы.
Постройка шара-монгольфье­ра. Работу начинают с выбора размера шара. Хочется сразу же предостеречь от постройки монгольфьера диаметром менее 1,3 м, так как масса оболочки по­лучается больше вел ичины подъ­емной силы и шар не взлетит.

Читать дальше ..

 Игры и соревнования
Строим сами летающие модели » Воздушные шары  |    Просмотров: 5347  
 
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

Читать дальше ..

 Стремление к полету
Строим сами летающие модели » Модели планеров  |    Просмотров: 5052  
 
Стремление к полету всегда влекло человека. Еще в древ­ности люди мечтали летать по­добно птицам. А они ведь не всегда при полете машут крыль­ями: кто из нас не наблюдал и другой вид их полета — пла­нирование. Раскинув крылья, птицы могут без затрат мус­кульной энергии подниматься вверх, опускаться вниз.
Поняв, что для подражания машущему полету птиц челове­ку недостаточно его мускульной силы, изобретатели направили усилия на воспроизведение их планирования, то есть пошли по   пути   создания   планеров.

Читать дальше ..

 Планер
Строим сами летающие модели » Модели планеров  |    Просмотров: 6185  
 
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные.
Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны.
Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. Здесь же расположена и кабина пилота.

Читать дальше ..

Rambler's Top100
© 2009