www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Игры и соревнования
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

» Расчет времени и места встречи самолетов, летящих на встречных курсах
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S', путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время   сближения самолетов tсбл= S'/ W1 + W2

» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется отно­сительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса само­лета применяются различные способы отсчета ортодромических пу­тевых углов и курсов самолета, выбор которы ...

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

» Модель планера «Малыш»
Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от преды­дущей «схематички» у этого планера крыло сделано объем­ным. Постройку модели лучше на­чать с фюзеляжа. Из фанеры или липовой пластины толщи­ной 4—5 мм выпиливают пи­лон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...

» Изображение ориентиров на экране индикатора
Для распознавания наблюдаемой на экране индикатора све­товой картины необходимо знать, как выглядят на экране различ­ные наземные объекты.

» Пилотажный змей «Акробат»
Пилотажный змей «Акробат» (рис. 10) сконструировал моск­вич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлинен­ной центральной рейкой. Это сделано для повышения про­дольной устойчивости. Угол между боковыми рейками-лон­жеронами составляет 156° и является оптимальным. Попе­речную устойчивость обеспечи­вают приподнятые относитель­но цент ...

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Определение места самолета штилевой прокладкой пути
При ведении визуальной ориентировки необходимо знать рай­он предполагаемого местонахождения самолета, чтобы опреде­лить, какой участок карты сличить с местностью. Район предпола­гаемого местонахождения самолета может быть определен штиле­вой прокладкой пути, которая выполняется по записанным в бор­товом журнале курсам, воздушной скорости и времени полета.

» Расчет общего запаса топлива с помощью графика
Для каждого полета рассчитывают количество топлива, необ­ходимое для заправки самолета. При этом исходят из того, что полет по трассе включает в себя следующие этапы: взлет и маневрирование в районе аэродрома взлета для выхо­да на линию заданного пути; набор заданного  эшелона; горизонтальный полет на заданном эшелоне по маршруту; снижение до высоты начала построения маневра захода на по­садку; ма ...

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Безопасная высота полета и ее расчет
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от ...

» Компоненты скорости воздуха относительно плоскости вращения ротора
Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежа­щую в плоскости вращения V cos  i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя ...

» Модель вертолета «Бел­ка»
Модель вертолета «Бел­ка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние ло­пасти закрепляют на раме, служащей одновременно фю­зеляжем. Раму изготовляют из двух липовых пластин раз­мером 220 Х 10 Х 1 мм, верх­ней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две дру­гих посредст ...

» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ...
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

» Использование НИ-50БМ при обходе гроз
При обходе гроз на маршруте полета НИ-50БМ может исполь­зоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Электролеты
В настоящее время среди авиамоделистов нашей страны все большее распространение получают модели самолетов с электродвигателем — электролеты. Их строят как для свободного полета, так в кор­довом варианте. И если кон­струирование свободнолетающих электролетов дело не­простое, то изготовление кор­довых «электричек» по силам многим любителям малой авиа­ции. Кордовые авиамодели с электродвигателе ...

» Кордовая модел
Из пяти категорий авиа­ционных моделей наиболее рас­пространенной можно при­знать категорию кордовых мо­делей. Кордовая модель — мо­дель летательного аппарата, летающая по кругу и управ­ляемая при помощи нерастягиваемых нитей или тросов (корд). Пилот, находящийся на земле, воздействуя на ор­ганы управления модели (ру­ли высоты) посредством корд, может заставить ее лететь горизонтально или вы ...

» Выбор параметров и влияние их на характеристики ротора
Качество ротора и коэффициента подъемной силы зависят, как это видно из уравнения предыдущего параграфа, от следующих параметров: δ - среднего профильного сопротивления; А - тангенса угла наклона кривой Cμ   по α для профиля лопасти; k - коэффициента заполнения; Θ - угла установки лопасти; γ - отвлеченной величины 

» Игры и соревнования. Воздушный «почтальон»
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема. Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх ...

» Использование курсовых приборов самолета Ан-24
Самолет Ан-24 оборудован гироскопическим индукционным ком­пасом ГИК-1 и гирополукомпасом ГПК-52, которые позволяют вы­полнять полет по заданному маршруту как по локсодромии, так и по ортодромии. При подготовке к полету штурман обязан решить, какой вид по­лета будет применяться, и в зависимости от этого подготовить и нанести на карту необходимые данные. Полеты по локсодромии рекомендуется осуществл ...

» Расчет элементов захода на посадку по малому прямоугольному маршруту в штиль
Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий междуна­родной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самоле­тов, имеющих приборную ско­рость пол ...

» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира
Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...

» Определение радиодевиации
Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или види­мой радиостанции.

» Полет от наземного радиопеленгатора
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр ...

» Сущность кодовых выражений ЩГЕ и ЩТФ
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

» Предполетная проверка КС-6
Для проверки КС в режиме «МК» необходимо: 1.  Включить курсовую систему. 2.  Установить на УШ и КМ-4 магнитное склонение, равное ну­лю. 3.  Установить переключатель режимов работы на пульте управ­ления   в положение   «МК». 4. Установить переключатель    «Осн. — Зап.»     в    положение «Осн.». 5.  Через 5 мин после включения КС нажать кнопку быстрого согласования и согласовать указатели, ко ...

» Поляра автожира
Для выполнения аэродинамического расчета автожира необходимо вычислить поляру всего автожира. Почти все существующие автожиры помимо основной несущей поверхности - ротора - имеют еще небольшое неподвижное крыло, расположенное под ротором. Поэтому прежде всего в нашу задачу должно войти определение поляры комбинированной несущей поверхности, состоящей из ротора и крыла; очевидно, что, имея такую по ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 

 Авиационный моделизм
Строим сами летающие модели  |    Просмотров: 9968  
 
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно.
Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамодели, делая первый шаг в тех­ническом творчестве. И очень часто, начав с модели, многие на всю жизнь приобщаются к авиации и авиационной технике.
Кто не знает таких выдающихся советских авиа­конструкторов, как А. Н. Туполев, О. К. Антонов, С. В. Ильюшин, А. С. Яковлев. Свой путь в авиацию прославленные конструкторы начали еще в детстве с постройки и запуска простейших летающих моделей.

Читать дальше ..

 Первые воздушные змеи
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 10360  
 
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю.
Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминают ни змею, ни дракона.
Первое подтверждение об ис­пользовании воздушных змеев в военном деле относится к 906 году. Киевский князь Олег при осаде Царьграда применил воз­душные змеи, которым была придана форма вооруженных всадников. Непосредственного Урона неприятелю они не причи­няли и служили только для устрашения.
Затем долгое время воздуш­ные змеи не находили практи­ческого применения. И лишь к концу XVIII века они стали служить науке.

Читать дальше ..

 Запуск воздушных змеев
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 8352  
 
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых.
В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по   всей   Польше   проводится праздник воздушного змея, в котором принимают участие мо­лодые конструкторы этого древ­него   летательного   аппарата. Воздушный змей — это прос­тейший  летательный   аппарат тяжелее   воздуха.   Он   может подняться-только в ветреную погоду. Встречный ветер оказы­вает на змей сильное давле­ние, стремясь снести его.  Но змей привязан под определен­ным углом атаки к лееру. Благо­даря углу атаки создается подъ­емная сила, которая зависит от его величины, скорости ветра и площади несущей поверхности. Воздушные змеи бывают двух видов: плоские (простейшие) и коробчатые.   Необходимая де­таль   первых — хвост,   вторые успешно летают без него. Карманный       змей-малыш (рис 1) изготовлен из совре­менных материалов. Он крайне прост, складывается до разме-пов, позволяющих убрать его в карман куртки, благодаря очень небольшой массе способен «поймать» самый слабый ветер. И если уж змей хорошо летает даже в городском дворе, то на открытой поляне, на лугу он сможет поставить рекорды вы­соты.

Читать дальше ..

 Змей-дельтаплан
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 13516  
 
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани.
Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся большом треугольнике находят середи­ну. С двух сторон треугольника (катетов) ткань подгибают на 30 мм и прошивают на швей­ной машинке. Из остатка ткани выкраивают киль с припуска­ми по 20 мм на швы с двух меньших сторон треугольника, подгибают материал на этих сторонах на 15 мм.

Читать дальше ..

 Змей-вертушка
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 12696  
 
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет крутиться, появится и эффект образования подъемной силы. Благодаря созданию подъемной силы и летает змей-вертушка.

Читать дальше ..

 Коробчатый воздушный змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 15200  
 
Коробчатый змей (рис. 4). Для его изготовления необхо­димы три основные рейки диа­метром 4,5 мм и длиной 690 мм и 12 коротких реек сечением 3X3 мм и длиной 230 мм. Ко­роткие рейки заостряют и встав­ляют на клею в основные под углом 60°. Оклеивают змей папиросной бумагой. Масса его 55—60 г.

Читать дальше ..

 Прямоугольный коробчатый змей Л. Харграва
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 12148  
 
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью.
Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной 220 мм. Кроме того, нужен какой-либо клей (ПВА, БФ-2, БФ-4), 20 м крепкой нитки и 0,5 м стальной проволоки диа­метром около 0,6 мм. Из бумаги вырезают выкройку для каждой из полос по размерам, приве­денным на рисунке.

Читать дальше ..

 Ромбический коробчатый змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 12651  
 
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами.
Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые трубки диаметром 12—15 мм или угол­ки сечением 15Х 15 мм. Всего понадобится четыре рейки дли­ной 1,6 м, одна 2 м, две 1,2 м и две 0,8 м. Материал кроят так, как показано на рис. 6, полотни­ща сшивают. Для открылков готовят выкройку  из  плотной бумаги в натуральную величи­ну, чтобы они получались оди­наковыми. По периметру полотен и открылков вшивают тонкий шпагат и в указанных точках привязывают к нему «хвостики» для крепления на каркасе. Места вокруг «хвостиков» дополнительно усиливают тканью, как показано на рис. 6 (узел Г).

Читать дальше ..

 Запуск змеев
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 8616  
 
Как было ска­зано ранее, воздушные змеи запускают на тонком, прочном шнуре-леере. Особенно внима­тельно надо отнестись к выбо­ру места запуска.
Необходимым условием  полета змея является ветер. Змеи различных размеров летают приопределенной скорости  ветра. Большой и тяжелый змей нав­ряд ли удастся запустить при слабом ветре, когда уверенно может   держаться   в   воздухе змей, изображенный на рис. 4.

Читать дальше ..

 Игры и соревнования. Воздушный «почтальон»
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 10613  
 
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема.
Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх и там так и остается — опуститься вниз не может.

Читать дальше ..

 Парусная тележка
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 9831  
 
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 мм, изгибают буквой П и вставляют в замок, другой, продев через скобу, вы­гибают полукольцом.
Каркас паруса представляет собой две перекрещивающиеся рейки: горизонтальная длиной 500 мм и сечением 6X6 мм, вертикальная длиной 700 мм и сечением 8X6 мм. Концы реек стягивают прочной ниткой и оклеивают бумагой или легкой тканью. Вертикальную рейку паруса шарнирно крепят к осно­ванию тележки. Из суровых ниток делают растяжку и при­крепляют ее к концам горизон­тальной рейки. Длину растяж­ки выбирают так, чтобы угол установки паруса к основанию был около 80 °.

Читать дальше ..

 Несложный пилотажный змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 10510  
 
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построить несложный пилотажный змей (рис 9).
 

Читать дальше ..

 Пилотажный змей «Акробат»
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 14309  
 
Пилотажный змей «Акробат» (рис. 10) сконструировал моск­вич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлинен­ной центральной рейкой. Это сделано для повышения про­дольной устойчивости. Угол между боковыми рейками-лон­жеронами составляет 156° и является оптимальным. Попе­речную устойчивость обеспечи­вают приподнятые относитель­но центральной рейки концы боковых лонжеронов.
Своеобразным стабилизато­ром является хвост змея, дли­на которого составляет 6 м. Если ленту, предназначенную служить в качестве хвоста, сделать   короче,   аппарат   поте­ряет продольную устойчивость, длиннее — существенно   ухудшится управляемость.

Читать дальше ..

 Тепловой воздушный шар
Строим сами летающие модели » Воздушные шары  |    Просмотров: 10857  
 
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально.
Одними из первых, кто хотел использовать теплый воздух для полетов, были французы: бра­тья Жозеф и Этьен Монгольфье. 5 июня 1783 года в Видалонлез-Анноне они испытали свой первый аппарат. Их шар диаметром около 12 м, напол­ненный горячим дымом, легко поднялся вверх, изумив этим публику. Пассажиров у того первенца не было. Братья стре­мились к следующему шагу. И 19 сентября они подняли на воздушном шаре первых «ис­пытателей»: петуха, утку и ба­рана. С тех пор тепловые воздушные шары стали назы­вать монгольфьерами.

Читать дальше ..

 Воздушный шар (аэро­стат)
Строим сами летающие модели » Воздушные шары  |    Просмотров: 9254  
 
Воздушный шар (аэро­стат) — летательный аппарат легче воздуха, полет которого объясняется законом Архиме­да: сила, выталкивающая по­груженное в жидкость (или газ) тело, равна весу жидкости (или газа) в объеме этого тела. Данная сила направлена верти­кально вверх и приложена к центру объема погруженной ча­сти тела. Иными словами, аэро­стат поднимается вверх (всплы­вает) благодаря подъемной си­ле газа, заключенного в обо­лочку.

Читать дальше ..

 Дирижабли
Строим сами летающие модели » Воздушные шары  |    Просмотров: 11215  
 
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого дирижабля включает   четыре-пять  двига­телей.
Как и самолет, дирижабль имеет оперение с рулями высоты и направления, но по сравне­нию с самолетом это более ран­ний вид воздушного транспор­та.

Читать дальше ..

 Постройка шара-монгольфье­ра
Строим сами летающие модели » Воздушные шары  |    Просмотров: 17176  
 
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы.
Постройка шара-монгольфье­ра. Работу начинают с выбора размера шара. Хочется сразу же предостеречь от постройки монгольфьера диаметром менее 1,3 м, так как масса оболочки по­лучается больше вел ичины подъ­емной силы и шар не взлетит.

Читать дальше ..

 Игры и соревнования
Строим сами летающие модели » Воздушные шары  |    Просмотров: 8743  
 
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

Читать дальше ..

 Стремление к полету
Строим сами летающие модели » Модели планеров  |    Просмотров: 8201  
 
Стремление к полету всегда влекло человека. Еще в древ­ности люди мечтали летать по­добно птицам. А они ведь не всегда при полете машут крыль­ями: кто из нас не наблюдал и другой вид их полета — пла­нирование. Раскинув крылья, птицы могут без затрат мус­кульной энергии подниматься вверх, опускаться вниз.
Поняв, что для подражания машущему полету птиц челове­ку недостаточно его мускульной силы, изобретатели направили усилия на воспроизведение их планирования, то есть пошли по   пути   создания   планеров.

Читать дальше ..

 Планер
Строим сами летающие модели » Модели планеров  |    Просмотров: 9955  
 
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные.
Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны.
Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. Здесь же расположена и кабина пилота.

Читать дальше ..

Rambler's Top100
© 2009