www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Постройка шара-монгольфье­ра
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы. Постройка шара-монгольфье­ра. Работу начинают с ...

» Курсы самолета
Курсом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета отно­сительно меридиана. Курс самолета может бы ...

» Зависимость между ортодромическим, истинным и магнитным курсами
При полете по ортодромии в каждый отдельный момент орто-дромический курс, который выдерживается по КС или по ГПК-52, отличается от магнитного курса, измеренного магнитным компа­сом.

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Модель вертолета «Бел­ка»
Модель вертолета «Бел­ка» (рис. 52) летает так же, как и настоящий вертолет, который имеет два соосных несущих винта. Нижние ло­пасти закрепляют на раме, служащей одновременно фю­зеляжем. Раму изготовляют из двух липовых пластин раз­мером 220 Х 10 Х 1 мм, верх­ней и нижней бобышек. Лопасти выполняют из плотной чертежной бумаги. Две из них вклеивают в ступицу верхнего ротора, а две дру­гих посредст ...

» Метательный планер «Старт»
Метательный планер «Старт» (рис. 22)  представляет собой дальнейшее   развитие   преды­дущих моделей. У него плав­ные очертания концевых час­тей   у   крыла,   стабилизатора и Киля. Основной материал — пенопласт ПС-4-40 и клей ПВА. Основа   фюзеляжа  —   две сосновые или липовые  рейки длиной   450   мм   и   сечением 6x2 мм. Между ними вклеи­вают пластину с наибольшим сечением 10X6 мм ...

» Поликонические проекции
По принципу построения поликонические проекции незначи­тельно отличаются от конических. Они являются дальнейшим усо­вершенствованием конических проекций. В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к парал­лелям или секущих земной шар по заданным параллелям. На по­верхность каждого конуса переносится небольшой шаровой пояс земной ...

» Списывание девиации магнитных компасов
Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвест­на, практически нельзя, так как она может достигать больших зна­чений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, элек ...

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Классификация высот полета от уровня измерения
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн ...

» Сравнение ротора автожира и крыла самолета
На фиг. 70 даны характеристика ротора, имеющего параметры А = 3, δ = 0,006, γ = 10, Θ = 2˚, k=1,0 и характеристика монопланного крыла, имеющего размах, равный диаметру ротора, и относительное удлинение λ = 6. Крыло имеет тот же профиль что и лопасть ротора автожира (Геттинген429),причем коэффициент подъемной силы крыла в целях сравнения отнесен к площади круга отметае ...

» Пенопласт в авиамоделиз­ме
В конструкции многих моделей, предлагаемых в этой книге, применяют пенопласт. Поэтому логичным будет пред­ложить некоторые практиче­ские советы по работе с ним. Пенопласт — вспененный полистирол нли полихлорви­нил, обладает низкой плот­ностью и большими возмож­ностями. Для изготовления авиамоделей применяют в ос­новном пенопласт марки ПС (полистирольный), ПХВ (по­лихлорвиниловый) и упаковоч­ ...

» Заход на посадку по радиолокационной системе РСП
Наземная радиолокационная система посадки РСП является резервным средством для захода на посадку по приборам и при­меняется, как правило, по запросу командира корабля, а в отдель­ных случаях — по требованию диспетчера. При заходе на посадку по системе РСП экипаж обязан маневрирование при подходе к аэродрому и заходе на посадку выполнять по команде диспетчера. Маневрирование осуществляется в ...

» Методика проведения занятий
В пионерском лагере из-за непродолжительной ра­боты кружка важное значение приобретает организация и со­держание каждого занятия. Вопросы методики проведе­ния занятий, их организацион­ная четкость во многом опре­деляются опытом руководи­теля. Большую часть руководи­телей кружков в пионерских лагерях составляют энтузи­асты технического творчества, слабым местом которых явля­ется недостаточное знани ...

» Полет от радиостанции
Полет от радиостанции в заданном направлении может быть выполнен в том случае, если она расположена на ЛЗП в ИПМ, ППМ или контрольном ориентире. В этом случае полет осуществляется одним из следующих спо­собов: с выходом на ЛЗП; с выходом в КПМ (ППМ). Пеленги, определяемые при полете от радиостанции, можно ис­пользовать для контроля пути по направлению.

» Использование РСБН-2 для захода на посадку
РСБН-2 при заходе на посадку позволяет: 1.  Производить «вписывание» самолета  в  установленную для данного аэродрома схему захода на посадку. 2.  Осуществлять контроль  полета по  установленной   схеме. 3.  Выводить самолет в зону курсового радиомаяка.

» Категории и классы летающих моделей
Основным документом, ре­гламентирующим постройку авиационных летающих моде­лей, своеобразным сводом за­конов являются «Правила про­ведения соревнований по авиа­модельному спорту в СССР». В основе этих Правил — поло­жения кодекса ФАИ — техни­ческие требования к моделям и правила соревнований по ним. В настоящее время в нашей стране распространены сле­дующие категории авиацион­ных моделе ...

» Использование РПСН-2 в режиме «Препятствие»
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, ко ...

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элеме ...

» Ошибки барометрических высотомеров
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый ...

» Расчет времени и места набора высоты заданного эшелона
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна. Рис. 5.5. Определение времени и места набора высоты ...

» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Расчет истинной воздушной скорости по узкой стрелке КУС
Узкая стрелка КУС связана с дополнительным механизмом, состоящим из блока анероидных коробок, который автоматически вводит методическую поправку на изменение плотности воздуха с высотой полета, если температура воздуха изменяется с высо­той в соответствии со стандартной атмосферой. Поэтому при тем­пературе на высоте полета, не соответствующей расчетной, узкая стрелка будет указывать истинную скоро ...

» Определение путевой скорости самолета
При полете самолета от радиолокатора и на радиолокатор пу­тевая скорость определяется в следующем порядке: 1.  Запросить у диспетчера место самолета и заметить время. 2.  Через 7—10 мин полета снова запросить место самолета и заметить время. 3.  Определить пройденный самолетом путь как разность между полученными дальностями:   Sпр =Д2—Д1 или Sпр=Д1—Д2 4.  По пройденному расстояни ...

» Формулы полных сил ротора
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.

» Определение навигационных элементов с помощью РСБН-2
РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж мо­жет определить ветер, по которому в случае необходимости выпол­няются расчеты для обеспечения самолетовождения за преде­лами рабочей области системы.

» Определение остаточной радиодевиации и составление графика радиодевиации
Остаточная радиодевиация определяется с целью обнаружения ошибок и неточностей, допущенных в процессе выявления и ком­пенсации радиодевиации. Для определения остаточной радиодевиации самолет последо­вательно устанавливается на 24 ОРК, на каждом ОРК определяет­ся КУР и вычисляется радиодевиация, которая записывается в протокол. Радиодевиация считается скомпенсированной, если на КУР = 0° она равна н ...

» Пилотажный электролет
Тем, кому работа над моде­лями с электродвигателем по­кажется интересной, предла­гаем построить «пилотажку» (рис. 47), разработанную Ю. Павловым. Эта модель несколько сложнее описанных ранее, но и возможности ее шире, да и энерговооружен­ность выше. Подкупает и внеш­няя форма модели, напоми­нающая настоящий самолет. Крыло склеивают из плас­тин упаковочного пенопласта. Можно также вырезать его из ц ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 

 Авиационный моделизм
Строим сами летающие модели  |    Просмотров: 9783  
 
Из всех видов технического творчества самый распространенный — авиационный моделизм. Орга­низованно им в кружках, на станциях или в клубах юных техников, а также в домах пионеров занимается около четырехсот тысяч человек. Но немало и тех, кто строит авиационные модели самостоятельно.
Примерно лет в десять, чуть, раньше или чуть позже, тысячи и тысячи мальчишек начинают кон­струировать авиамодели, делая первый шаг в тех­ническом творчестве. И очень часто, начав с модели, многие на всю жизнь приобщаются к авиации и авиационной технике.
Кто не знает таких выдающихся советских авиа­конструкторов, как А. Н. Туполев, О. К. Антонов, С. В. Ильюшин, А. С. Яковлев. Свой путь в авиацию прославленные конструкторы начали еще в детстве с постройки и запуска простейших летающих моделей.

Читать дальше ..

 Первые воздушные змеи
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 10097  
 
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю.
Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминают ни змею, ни дракона.
Первое подтверждение об ис­пользовании воздушных змеев в военном деле относится к 906 году. Киевский князь Олег при осаде Царьграда применил воз­душные змеи, которым была придана форма вооруженных всадников. Непосредственного Урона неприятелю они не причи­няли и служили только для устрашения.
Затем долгое время воздуш­ные змеи не находили практи­ческого применения. И лишь к концу XVIII века они стали служить науке.

Читать дальше ..

 Запуск воздушных змеев
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 8204  
 
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых.
В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по   всей   Польше   проводится праздник воздушного змея, в котором принимают участие мо­лодые конструкторы этого древ­него   летательного   аппарата. Воздушный змей — это прос­тейший  летательный   аппарат тяжелее   воздуха.   Он   может подняться-только в ветреную погоду. Встречный ветер оказы­вает на змей сильное давле­ние, стремясь снести его.  Но змей привязан под определен­ным углом атаки к лееру. Благо­даря углу атаки создается подъ­емная сила, которая зависит от его величины, скорости ветра и площади несущей поверхности. Воздушные змеи бывают двух видов: плоские (простейшие) и коробчатые.   Необходимая де­таль   первых — хвост,   вторые успешно летают без него. Карманный       змей-малыш (рис 1) изготовлен из совре­менных материалов. Он крайне прост, складывается до разме-пов, позволяющих убрать его в карман куртки, благодаря очень небольшой массе способен «поймать» самый слабый ветер. И если уж змей хорошо летает даже в городском дворе, то на открытой поляне, на лугу он сможет поставить рекорды вы­соты.

Читать дальше ..

 Змей-дельтаплан
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 13151  
 
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани.
Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся большом треугольнике находят середи­ну. С двух сторон треугольника (катетов) ткань подгибают на 30 мм и прошивают на швей­ной машинке. Из остатка ткани выкраивают киль с припуска­ми по 20 мм на швы с двух меньших сторон треугольника, подгибают материал на этих сторонах на 15 мм.

Читать дальше ..

 Змей-вертушка
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 12481  
 
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет крутиться, появится и эффект образования подъемной силы. Благодаря созданию подъемной силы и летает змей-вертушка.

Читать дальше ..

 Коробчатый воздушный змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 14938  
 
Коробчатый змей (рис. 4). Для его изготовления необхо­димы три основные рейки диа­метром 4,5 мм и длиной 690 мм и 12 коротких реек сечением 3X3 мм и длиной 230 мм. Ко­роткие рейки заостряют и встав­ляют на клею в основные под углом 60°. Оклеивают змей папиросной бумагой. Масса его 55—60 г.

Читать дальше ..

 Прямоугольный коробчатый змей Л. Харграва
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 11822  
 
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью.
Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной 220 мм. Кроме того, нужен какой-либо клей (ПВА, БФ-2, БФ-4), 20 м крепкой нитки и 0,5 м стальной проволоки диа­метром около 0,6 мм. Из бумаги вырезают выкройку для каждой из полос по размерам, приве­денным на рисунке.

Читать дальше ..

 Ромбический коробчатый змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 12434  
 
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами.
Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые трубки диаметром 12—15 мм или угол­ки сечением 15Х 15 мм. Всего понадобится четыре рейки дли­ной 1,6 м, одна 2 м, две 1,2 м и две 0,8 м. Материал кроят так, как показано на рис. 6, полотни­ща сшивают. Для открылков готовят выкройку  из  плотной бумаги в натуральную величи­ну, чтобы они получались оди­наковыми. По периметру полотен и открылков вшивают тонкий шпагат и в указанных точках привязывают к нему «хвостики» для крепления на каркасе. Места вокруг «хвостиков» дополнительно усиливают тканью, как показано на рис. 6 (узел Г).

Читать дальше ..

 Запуск змеев
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 8459  
 
Как было ска­зано ранее, воздушные змеи запускают на тонком, прочном шнуре-леере. Особенно внима­тельно надо отнестись к выбо­ру места запуска.
Необходимым условием  полета змея является ветер. Змеи различных размеров летают приопределенной скорости  ветра. Большой и тяжелый змей нав­ряд ли удастся запустить при слабом ветре, когда уверенно может   держаться   в   воздухе змей, изображенный на рис. 4.

Читать дальше ..

 Игры и соревнования. Воздушный «почтальон»
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 10351  
 
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема.
Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх и там так и остается — опуститься вниз не может.

Читать дальше ..

 Парусная тележка
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 9671  
 
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 мм, изгибают буквой П и вставляют в замок, другой, продев через скобу, вы­гибают полукольцом.
Каркас паруса представляет собой две перекрещивающиеся рейки: горизонтальная длиной 500 мм и сечением 6X6 мм, вертикальная длиной 700 мм и сечением 8X6 мм. Концы реек стягивают прочной ниткой и оклеивают бумагой или легкой тканью. Вертикальную рейку паруса шарнирно крепят к осно­ванию тележки. Из суровых ниток делают растяжку и при­крепляют ее к концам горизон­тальной рейки. Длину растяж­ки выбирают так, чтобы угол установки паруса к основанию был около 80 °.

Читать дальше ..

 Несложный пилотажный змей
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 10286  
 
Совсем недавно, в конце 70-х годов, древние летательные ап­параты получили дальнейшее развитие — появились пило­тажные змеи. Первые, не всег­да удачные экспериментальные полеты помогли разработать оп­тимальные размеры и форму, изучить технику управления та­ким змеем. Как и во всех моде­лях среди акробатических змеев есть как простые, так и слож­ные конструкции. Для начала рекомендуем построить несложный пилотажный змей (рис 9).
 

Читать дальше ..

 Пилотажный змей «Акробат»
Строим сами летающие модели » Воздушные змеи  |    Просмотров: 13978  
 
Пилотажный змей «Акробат» (рис. 10) сконструировал моск­вич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлинен­ной центральной рейкой. Это сделано для повышения про­дольной устойчивости. Угол между боковыми рейками-лон­жеронами составляет 156° и является оптимальным. Попе­речную устойчивость обеспечи­вают приподнятые относитель­но центральной рейки концы боковых лонжеронов.
Своеобразным стабилизато­ром является хвост змея, дли­на которого составляет 6 м. Если ленту, предназначенную служить в качестве хвоста, сделать   короче,   аппарат   поте­ряет продольную устойчивость, длиннее — существенно   ухудшится управляемость.

Читать дальше ..

 Тепловой воздушный шар
Строим сами летающие модели » Воздушные шары  |    Просмотров: 10650  
 
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально.
Одними из первых, кто хотел использовать теплый воздух для полетов, были французы: бра­тья Жозеф и Этьен Монгольфье. 5 июня 1783 года в Видалонлез-Анноне они испытали свой первый аппарат. Их шар диаметром около 12 м, напол­ненный горячим дымом, легко поднялся вверх, изумив этим публику. Пассажиров у того первенца не было. Братья стре­мились к следующему шагу. И 19 сентября они подняли на воздушном шаре первых «ис­пытателей»: петуха, утку и ба­рана. С тех пор тепловые воздушные шары стали назы­вать монгольфьерами.

Читать дальше ..

 Воздушный шар (аэро­стат)
Строим сами летающие модели » Воздушные шары  |    Просмотров: 9057  
 
Воздушный шар (аэро­стат) — летательный аппарат легче воздуха, полет которого объясняется законом Архиме­да: сила, выталкивающая по­груженное в жидкость (или газ) тело, равна весу жидкости (или газа) в объеме этого тела. Данная сила направлена верти­кально вверх и приложена к центру объема погруженной ча­сти тела. Иными словами, аэро­стат поднимается вверх (всплы­вает) благодаря подъемной си­ле газа, заключенного в обо­лочку.

Читать дальше ..

 Дирижабли
Строим сами летающие модели » Воздушные шары  |    Просмотров: 10998  
 
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого дирижабля включает   четыре-пять  двига­телей.
Как и самолет, дирижабль имеет оперение с рулями высоты и направления, но по сравне­нию с самолетом это более ран­ний вид воздушного транспор­та.

Читать дальше ..

 Постройка шара-монгольфье­ра
Строим сами летающие модели » Воздушные шары  |    Просмотров: 16574  
 
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы.
Постройка шара-монгольфье­ра. Работу начинают с выбора размера шара. Хочется сразу же предостеречь от постройки монгольфьера диаметром менее 1,3 м, так как масса оболочки по­лучается больше вел ичины подъ­емной силы и шар не взлетит.

Читать дальше ..

 Игры и соревнования
Строим сами летающие модели » Воздушные шары  |    Просмотров: 8592  
 
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

Читать дальше ..

 Стремление к полету
Строим сами летающие модели » Модели планеров  |    Просмотров: 8046  
 
Стремление к полету всегда влекло человека. Еще в древ­ности люди мечтали летать по­добно птицам. А они ведь не всегда при полете машут крыль­ями: кто из нас не наблюдал и другой вид их полета — пла­нирование. Раскинув крылья, птицы могут без затрат мус­кульной энергии подниматься вверх, опускаться вниз.
Поняв, что для подражания машущему полету птиц челове­ку недостаточно его мускульной силы, изобретатели направили усилия на воспроизведение их планирования, то есть пошли по   пути   создания   планеров.

Читать дальше ..

 Планер
Строим сами летающие модели » Модели планеров  |    Просмотров: 9761  
 
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные.
Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны.
Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. Здесь же расположена и кабина пилота.

Читать дальше ..

Rambler's Top100
© 2009