www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Воздушные змеи » Пилотажный змей «Акробат»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Авторотация несущего винта-ротора
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс ...

» Дирижабли
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого ...

» Электролеты
В настоящее время среди авиамоделистов нашей страны все большее распространение получают модели самолетов с электродвигателем — электролеты. Их строят как для свободного полета, так в кор­довом варианте. И если кон­струирование свободнолетающих электролетов дело не­простое, то изготовление кор­довых «электричек» по силам многим любителям малой авиа­ции. Кордовые авиамодели с электродвигателе ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Назначение и принцип устройства навигационной линейки НЛ-10М
Навигационная линейка НЛ-10М является счетным инструмен­том пилота и штурмана и предназначена для выполнения необхо­димых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...

» Расчет вертикальной скорости снижения или набора высоты
В практике самолетовождения бывают случаи, требующие сме­ны эшелона полета. При необходимости диспетчер указывает эки­пажу время начала и окончания смены эшелона или задает учас­ток, на котором должно быть произведено снижение. На основа­нии указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке.

» Сущность визуальной ориентировки
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

» Работа с картой
Определение координат пункта по карте. В практике самолето­вождения приходится производить некоторые расчеты по географи­ческим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1)  провести через заданный пункт отрезки прямых, параллель­ных ближайшей параллели и ближайшему меридиану; 2)  в точках пересеч ...

» Вертолет (геликоптер)
Вертолет (геликоптер) — летательный аппарат тяжелее воздуха, у которого подъемная сила и тяга создаются несу­щим винтом (ротором). Во вращение ротор приводится силовой установкой. Вертолет способен подниматься без раз­бега, зависать в воздухе, ле­теть в любом направлении и , производить посадку на любую площадку. Известны интереснейшие работы М. В. Ломоносова по созданию летательных аппа­рат ...

» Подготовка к проведению радиодевиационных работ
Подготовка к проведению радиодевиационных работ включает: 1. Подготовку девиационного пеленгатора, бланков протоколов выполнения радиодевиационных работ и бланков графиков. 2.  Выбор для выполнения радиодевиационных работ площадки, удаленной не менее чем на 150—200 м    от    стоянок    самолетов, строений и линий высоковольтных передач.    Площадка    должна быть горизонтальной, в направле ...

» Выход на линию заданного пути
Выход на ЛЗП — важный этап работы экипажа. Он заключа­ется в определении такого курса следования, при выдерживании которого фактический путевой угол был бы равен заданному пу­тевому углу или отличался от него не более чем на 2°. В зависимости от навигационной обстановки курс следования может определяться одним из следующих способов: 1)   по прогностическому или шаропилотному ветру; 2)   по в ...

» Определение места самолета
Место самолета при помощи наземного радиолокатора опреде­ляется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1)   запросить у диспетчера место самолета; 2)   получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3)   отложить  на  карте от  радиолокатора  полученный   азимут и дальность на линии азимута.

» Основные систе­мы и агрегаты самолета
Все современные самолеты сходны по устройству, имеют одни и те же основные систе­мы и агрегаты. Крыло — главная часть самолета — создает подъем­ную силу, удерживающую его в воздухе. У разных само­летов крылья отличаются раз­мерами, формой и числом. Самолет с одним крылом на­зывают монопланом, а имеющий два крыла (одно над   другим) — бипланом. Конструкция крыла зави­сит от типа с ...

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Определение навигационных элементов с помощью РСБН-2
РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж мо­жет определить ветер, по которому в случае необходимости выпол­няются расчеты для обеспечения самолетовождения за преде­лами рабочей области системы.

» Расчет времени и места набора высоты заданного эшелона
Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое вре­мя будет набрана заданная  высота  полета.  Время  набора  высоты рассчитывается по высотенабора и вертикальной скорости на­бора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна. Рис. 5.5. Определение времени и места набора высоты ...

» Поправка на угол схождения меридианов
Как известно, на картах конической и поликонической проек­ций, применяемых для целей радиопеленгации, меридианы непа­раллельны между собой. Поправкой σ на схождение меридианов назы­вается угол, заключенный между северным направлением истин­ного меридиана радиостанции и северным направлением истинного меридиана самолета, перенесенного в точку радиостанции парал­лельно самому себе (рис. 12.7). ...

» Кордовая модель самолета «Универсал»
Универсальную кордовую модель самолета (рис. 42) разработали юные техники Ти­мирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневрен­ность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пило­тажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изго ...

» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Контроль и исправление пути при полете от радиолокатора и на радиолокатор
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осу­ществляется в следующем порядке: 1.  Запросить у диспетчера место самолета. 2.  Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм);    БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между мериди ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Перевод футов в метры и обратно
Футы переводятся в метры, а метры в футы по формулам: Hм = Hфуты:3,28; Hфуты = Нм·3,28. Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

» Умножение и деление чисел при помощи НЛ-10М
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

» Расчет элементов захода на посадку по малому прямоугольному маршруту в штиль
Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий междуна­родной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самоле­тов, имеющих приборную ско­рость пол ...

» Расчет общего запаса топлива с помощью графика
Для каждого полета рассчитывают количество топлива, необ­ходимое для заправки самолета. При этом исходят из того, что полет по трассе включает в себя следующие этапы: взлет и маневрирование в районе аэродрома взлета для выхо­да на линию заданного пути; набор заданного  эшелона; горизонтальный полет на заданном эшелоне по маршруту; снижение до высоты начала построения маневра захода на по­садку; ма ...

» Контроль и исправление пути
При выполнении полета вследствие изменения ветра, неточного выдерживания заданного режима полета и ошибок в навигацион­ных измерениях и расчетах самолет может уклониться от ЛЗП и выйти на заданные пункты маршрута в неназначенное время. В целях точного следования по заданной трассе (маршруту) и точного по времени выхода на контрольные ориентиры, поворот­ные пункты и аэродром посадки, экипаж в проце ...

» Самолетовождение с использованием радиокомпаса - Задачи самолетовождения, решаемые с помощью радиоко ...
Автоматический радиокомпас (АРК) является приемным уст­ройством направленного действия, позволяющим определять на­правление на  передающую радиостанцию. АРК совместно с при­водными и радиовещательными станциями относится к угломер­ным системам самолетовождения.

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» Спарка-тренажер
Как из­вестно, свой самый первый полет курсант выполняет не один, а вдвоем с инструктором на самолете с двойным управлением. Сначала управ­ляет инструктор, а обучаемый лишь слегка придерживает ручку и запоминает необхо­димые для полета манипуля­ции. И лишь на следующем этапе инициатива переходит к ученику. Однако инструктор и тут всегда начеку — в кри­тической ситуации он всегда может вмешат ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Пилотажный змей «Акробат»
Строим сами летающие модели » Воздушные змеи  |   Просмотров: 9232  
 
Пилотажный змей «Акробат» (рис. 10) сконструировал моск­вич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлинен­ной центральной рейкой. Это сделано для повышения про­дольной устойчивости. Угол между боковыми рейками-лон­жеронами составляет 156° и является оптимальным. Попе­речную устойчивость обеспечи­вают приподнятые относитель­но центральной рейки концы боковых лонжеронов.
Своеобразным стабилизато­ром является хвост змея, дли­на которого составляет 6 м. Если ленту, предназначенную служить в качестве хвоста, сделать   короче,   аппарат   поте­ряет продольную устойчивость, длиннее — существенно   ухудшится управляемость.
 
Пилотажный змей «Акробат»
 
Рис. 10. Пилотажный змей «Акробат»:
1 —- носовая сппца; 2 — фиксатор; 3 — крючок фпксатора; 4 — трубка шарппра; 5 — ухо шарпнра; 6 — центральная пружппа; 7 —стакан; 8 —парус; 9 — боковая рейка-лонжерон; 10 — центральная Рейка-лонжерон; 11— баланспровочпыя груз; 12 — хвостовая свнца; 13 — карабпн; 14 — фигурный кронштейн; 15 — хвостовая лента
 
Управляется змей двумя ле-ерами длиной по 70 м. Использовать более длинные нет смысла, так как это повлечет запаз-дывание команд и неточность их передачи.
Работу над пилотажным зме-ем начинают с изготовления ме­таллических деталей.  Прежде всего сгибают пружинный шар-нир. Для него потребуется про­волока ОВС диаметром 3 мм. Из проволоки той же марки диаметром 2 мм делают две оси шарниров, а диаметром 1 мм — два крючка фиксатора, носовую и хвостовую спицы,  а также хвостовой карабин.
Для укрепления боковых ре­ек-лонжеронов потребуются че­тыре жестяные трубки с внут­ренним диаметром 3,5 мм; две из них запаивают с одной сторо­ны, а к двум другим припаи­вают крючки фиксаторов и уш­ки шарнира из жести толщи­ной 0,6 мм.
Рейки-лонжероны — из сухой мелкослойной ели. После пред­варительной обработки их тща-тельно вышкуривают и покры-вают эмалитом. Следует отметить, что лонжероны имеют ми­нимальные поперечные размеры и работают на пределе прочнос­ти, поэтому не следует умень­шать их сечения.
Сборку каркаса начинают с установки на центральном лон­жероне носовой спицы и пружины, а затем хвосто­вой спицы и карабина. Узлы крепления фиксируют нитка­ми с клеем. Тем же спосо­бом  закрепляют   на   боковых лонжеронах жестяные «стакан­чики».
Далее в прорези на корневых частях боковых реек-лонжеро­нов необходимо вставить оси и посадить на них шарниры, после чего лонжероны надевают на «усы» центральной пружины и притягивают, как показано на рисунках,    резиновой    нитью.
Оболочку крыла (парус) склеивают из лавсановой плен­ки с помощью липкой ленты-скойча. Такой парус обладает лишь одним недостатком — не­высоким, особенно в морозную погоду, полетным ресурсом — не более 50 ч.
В последних вариантах «Ак­робата» использовался парус из ткани типа «болонья», имеющей большую прочность и долговеч­ность. Но эта ткань гигроско­пична, и поэтому в дождливую погоду аппарат тяжелеет и ле­тает «неохотно». После полетов парус из болоньи обязательно просушивают. Для первых пи­лотажных змеев лучше восполь­зоваться тонким полиэтиленом.
Закрепив парус на каркасе, змей запускают как планер; правильно отрегулированный, он должен пролетать не мень­ше 20 м. Если «планер» пики­рует, на его хвостовой части закрепляют грузик — неболь­шую полоску свинца.
Для уздечки потребуется кап­роновая нить или леска дли­ной 4—5 м. Ее концы привязы­вают к боковым лонжеронам, а середину — к центральному. Змей приподнимают за два об­разовавшихся кольца и подве­шивают так, чтобы носовая спица касалась пола, а хвосто­вая была приподнята на 50— 80 мм. В точках подвески следует завязать по петле — к ним крепят леера управления.
Хвост — капроновая лента шириной 70 мм и длиной 6 м Для его фиксации к хвоствому карабину необходимо согнуть фигурный кронштейн из алюминиевой проволоки диаметром 2 мм. Прочные кронштейны делать нежелательно — при зацепах алюминиевый сгибается и змей теряет лишь хвост, но не ломается.
Леера изготовляют из капро­новой лески. Основное требова­ние к ним — прочность: каждый должен выдерживать на разрыв не менее 5 кгс. Леера крепят к уздечке карабинами, свобод­ные их концы соединяют пере­мычкой длиной 1,6 м, нк кото­рую насаживают ручки управ­ления — отрезки дюралюминие­вых труб диаметром 12—15 мм и длиной 70—80 мм.
При первых запусках не за­бывайте, что «Акробат» чутко реагирует буквально на каждое движение ручек.
Осваивать управление зме­ем и овладевать первыми фигу­рами пилотажа лучше всего при скорости ветра 5—10 м/с. Для этого леера растягивают на земле по ветру, подсоеди­няют их к уздечке, а затем к центральному лонжерону кре­пят хвост. Помощник припод­нимает аппарат до уровня плеч и удерживает его за централь­ную пружину. Пилот перебра­сывает перемычку за спину и взявшись за ручки управления натягивает нити и подает команду на старт. Помощник выпускает змей легким толч­ком вверх.
Подниматься в небо он дол­жен плавно, постепенно набирая скорость. На отклонения его от курса, даже самые незначи­тельные, необходимо реагиро­вать быстрыми, но нерезкими движениями ручек управления. После набора высоты устанав­ливают «Акробат» строго по ветру и обращают внимание на расположение ручек. Если они находятся не на одном уровне, то змей сажают и укорачива­ют один из лееров.
Управлять пилотажным зме­ем не слишком сложно. Если потянуть, например, за правый леер, «Акробат» начнет повора­чивать вправо, но стоит вновь выровнять ручки управления, как он полетит прямо в том направлении, которое ему за­дали.
Петли выполняют также натяжением одного из лееров. На­чав делать петлю, не выравни­вают ручки до тех пор, пока змей не выйдет из пикирования и не начнет подниматься. Сде­лав несколько петель в одну сторону, разворачивают его и делают столько же в другую сторону, чтобы тем самым раз­мотать леера.
Старайтесь, чтобы петли бы­ли «круглыми», и отработайте их выполнение до автоматиз­ма. Попробуйте в определен­ные фазы разворотов включать прямолинейный полет, это сде­лает петли «квадратными», «треугольными» или даже «шес­тигранными».

Распечатать ..

 
Другие новости по теме:

  • Несложный пилотажный змей
  • Змей-дельтаплан
  • Коробчатый воздушный змей
  • Прямоугольный коробчатый змей Л. Харграва
  • Запуск змеев


  • Rambler's Top100
    © 2009