www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет » Решение навигационного треугольника скоростей
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Курсовая система КС-6, ее назначение и комплект
Курсовая система КС-6 представляет собой централизованное устройство, объединяющее магнитные, гироскопические и астроно­мические средства измерения курса, предназначенное для опреде­ления и выдерживания магнитного, истинного и ортодромического курсов самолета, углов разворота, а также для выдачи сигналов курса в автопилот, навигационный индикатор НИ-50БМ и другие потребители. Совместно с курсовой ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Модель воздушного боя
Модели воздушного боя, или как их часто называют «бойцовки», несомненно, держат первенство среди всех кор­довых летательных аппара­тов. Обилие всевозможных схем и конструкторских ре­шений — наглядное подтверж­дение сказанному. Знакомство с этим классом авиационных моделей начнем с несложной «бойцовки», разработанной в пионерском лагере «Родник», где много лет автор был руководителем   авиакр ...

» Игры и соревнования с моде­лями планеров
Соревнования — это итог ра­боты каждого авиамоделиста. В них проверяется не толь­ко качество моделей, но и умение их конструкторов ис­пользовать полученные знания. В практике авиационного мо­делизма широко известны не только соревнования, но и игры, особенно с бумажными моделями. Перед началом стартов все участвующие в них планеры необходимо над­писать — сделать опознава­тельные знаки. ...

» Навигационные задачи на маневрирование - Определение времени последнего срока вылета
Дневные срочные вылеты с аэродромов, не оборудованных для ночных полетов, разрешается начинать за 30 мин до восхода Солн­ца и заканчивать полет за 30 мин до наступления темноты в рав­нинной и холмистой местности и не позднее захода Солнца в гор­ной местности. В районах севернее широты 60° полеты разрешается заканчивать за 30 мин до наступления темноты.

» Требования безопасности самолетовождения
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

» Модель вертолета чешских авиамоделистов
Модель вертолета чешских авиамоделистов (рис. 53) на­поминает настоящий гели­коптер. Фюзеляж заодно с килем вырезают из пластины пено­пласта толщиной 5 мм и по периметру фигуры окантовы­вают липовыми рейками сече­нием 5X1 мм. В качестве силовой балки используют сос­новую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшип­ник винта, а с другого при­вязывают крючок из прово­ ...

» О выборе диаметра и коэффициента заполнения ротора при проектировании автожира
Если при проектировании автожира имеются в виду его основные характерные качества, как то: крутой угол посадки и низкая мини­мальная скорость горизонтального полета без снижения, то выбор диаметра ротора нужно делать, задавшись такой нагрузкой w на единицу поверхности ометаемого диска ротора, при которой вертикальная скорость крутой посадки была бы безопасна. Величины нагрузки на ометаемую ротором ...

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Компоненты скорости воздуха относительно плоскости вращения ротора
Поступательную скорость V ротора, имеющего угол атаки i°, можно разложить на две составляющие (фиг. 52); нормальную к оси ротора, лежа­щую в плоскости вращения V cos  i и параллельную оси ротора - V sin i. Помимо скорости V воздух относительно плоскости вращения ротора имеет индуктивную скорость (скорость, вызванную ротором) v. Направление индуктивной скорости можно приближенно установить, исходя ...

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Вывод самолета на запасный аэродром с помощью наземного радиолокатора
Вывод самолета на запасный аэродром с помощью наземного радиолокатора применяется в следующих случаях: 1)   при потере ориентировки экипажем самолета; 2)   при   отказе   радиокомпаса   и  невозможности   использовать другие средства самолетовождения; 3)   при полете в пункт, в котором не имеется радионавигацион­ной точки.

» Модель ракеты «Пионер»
Модель ракеты «Пионер» (рис. 59) снаряжается двига­телем МРД 10-8-4. Технология ее изготовления немного отли­чается от предыдущей. Корпус клеят из плотной бумаги в два слоя   на   оправке  диаметром 55 мм. Четыре стабилизатора вырезают из пластины пено­пласта ПС-4-40 толщиной 5 мм, профилируют и оклеивают пис­чей бумагой. После высыха­ния их обрабатывают шлифо­вальной шкуркой и клеем ПВА крепят вс ...

» Сокращенные обозначения и условные знаки, принятые в самолетовождении
Точки и линииМС — место   самолета ИПМ — исходный   пункт   маршрута ППМ — поворотный   пункт   маршрута КО — контрольный   ориентир КЭ — контрольный   этап ЛЗП — линия   заданного   пути ЛФП — линия фактического пути АЛП — астрономическая   линия   положения РНТ — радионавигационная   точка ОПРС — отдельная   приводная   радиостанция РСБ ...

» Расчет пройденного расстояния, времени полета и путевой скорости
Пройденное   расстояние определяется   по формуле S = Wt, где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек). Для определения пройденного расстояния на НЛ-10М необходи­мо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 и ...

» Определение места самолета
Место самолета определяется с целью полного контроля пути, определения навигационных элементов полета и восстановления потерянной ориентировки. В зависимости от условий полета и навигационной обстановки МС может быть определено: по одному радиопеленгатору; по двум радиопеленгаторам; по радиопеленгатору и радиостанции.

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» Игры и соревнования
Одно из доступных и простых — со­ревнование иа время полета моделей с парашютом. Если позволяют условия, можно проводить несколько запусков-туров, если нет — ограничить­ся одним. Продолжительность фиксируемого полета — время с момента взлета модели до момента посадки или до того момента,  когда  она  скроется из поля зрения. Участник, модель которого покажет нан-большее время пол ...

» Модель планера
Модель планера — конструк­ция,    которая    воспроизводит лишь схему основных частей планера, не копирующая его внешне. Знакомство с моделями пла­неров лучше начать с самой простой модели, изготовленной из бумаги. В практике авиамоделизма ее называют учеб­ной (рис. 16).

» Использование РПСН-2 в режиме «Препятствие»
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, ко ...

» Ручка управления с фик­сатором
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее ос­воить этот прием, применяют ручку управления, которая фиксируется на предплечье не­большим  хомутом   (рис.  67).

» Устранение установочной ошибки рамки радиокомпаса
Блок рамки устанавливается на самолет так, чтобы направле­ние курсовой черты, отмеченное рисками на основании рамки, сов­пало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет рав­на нулю. Установочной ошибкой рамки радиокомпаса на­зывается угол, на который отклоняется стрелка указателя от нуле­вого деления шкалы при КУР = 0°. Э ...

» Запуск воздушных змеев
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых. В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по   всей   Польше   проводит ...

» Основные точки, линии и круги на земном шаре
Земля непрерывно вращается с запада на восток. Диаметр, во­круг которого происходит это вращение, называется осью враще­ния Земли (рис. 1.2). Эта ось пересекается с поверхностью Земли в двух точках, ко­торые называются географическими полюсами: один Се­верным (С), а другой Южным» (Ю). Северным называется тот по­люс, в котором, если смотреть на него сверху, вращение Земли на­правлено против хода ча ...

» Зависимость между ортодромическим, истинным и магнитным курсами
При полете по ортодромии в каждый отдельный момент орто-дромический курс, который выдерживается по КС или по ГПК-52, отличается от магнитного курса, измеренного магнитным компа­сом.

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Определение навигационных элементов с помощью РСБН-2
РСБН-2 позволяет определять путевую скорость и угол сноса. Используя эти основные навигационные элементы, экипаж мо­жет определить ветер, по которому в случае необходимости выпол­няются расчеты для обеспечения самолетовождения за преде­лами рабочей области системы.

» Работа с картой
Определение координат пункта по карте. В практике самолето­вождения приходится производить некоторые расчеты по географи­ческим координатам пунктов или устанавливать эти координаты на различных навигационных приборах. Для определения координат пункта по карте необходимо: 1)  провести через заданный пункт отрезки прямых, параллель­ных ближайшей параллели и ближайшему меридиану; 2)  в точках пересеч ...

» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА
Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1.  Произвести внешний осмотр  щитков управления   и   прибо­ров системы, установленных на самолете. 2.  Убедиться,   что горизонтальная   и    вертикальная    стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС   с помощью винтов с над­писью «К» и «Г» на КППМ д ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Решение навигационного треугольника скоростей
Самолетовождение » Навигационные элементы полета и их расчет  |   Просмотров: 17467  
 
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить:
1)   графически (на бумаге);
2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета;
3)   приближенно подсчетом в уме.
Решение навигационного треугольника скоростей

Решение навигационного треугольника скоростей

Так как sinφ= sin (180°—φ), а внешний угол треугольника ра­вен сумме внутренних углов, не смежных с ним, т. е. угол 180°—φ=УВ+УС, приведенные выше отношения записываются в та­ком виде:
 
Решение навигационного треугольника скоростей
Эти отношения решаются с помощью НЛ-10М (рис. 7.10). При этом необходимо помнить:
1)   при углах ветра 0—180° углы сноса положительные;
2)   при углах ветра  180—360° углы сноса отрицательные;
3) при углах ветра больше 180° на НЛ-10М устанавливают его дополнение до 360°, т. е. разность 360°—УВ;
4)  при угле ветра, равном нулю, W=V+U, а при угле ветра, равном 180°, W=V—U; для других значений углов ветра путевая скорость отсчитывается по НЛ-10М против суммы УВ+УС, при нахождении которой к УВ прибавляется  всегда   абсолютная  ве­личина УС независимо от его знака;
5)   для  углов ветра в пределах  5—175°  используется   шкала синусов, а в пределах 0,5—5 и 175—179,5° — шкала тангенсов.
Отсчет угла сноса для расчета курса следования производится с точностью до 1°, а для точного определения путевой скорости при углах ветра, близких к 0 и 180°, — с точностью до десятых долей градуса;
 
Решение навигационного треугольника скоростей
 
При помощи навигационной линейки определяются угол сноса и путевая скорость, а затем рас­считываются  курс  следования и  время полета на заданном участ­ке трассы.
Курсом следования на­зывается курс, рассчитанный с  учетом угла сноса для следования по линии заданного пути. Для каждого участка трассы по­лета курс следования, угол сносами путевая скорость перед полетом определяются по прогностическому, а в полете по измеренному ветру.
Пример.   Vи=460   км/ч;  ЗМПУ=105°;  δ = 330°;   U=80 км/ч;   S = 120    км. Определить УС, W, МКсл и t.
Решение. 1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 330°—180° — 105° = 45°.
2.   Определяем угол сноса и путевую скорость   (см.  ключ  для НЛ-10М на рис. 7.10): УСЗ=+7°; W=512 км/ч.
3.  Рассчитываем магнитный курс следования:
МКсл = ЗМПУ — (± УС) = 105° — (+ 7°) = 98°.
4.  Определяем с помощью НЛ-10М время полета: t=14 мин.
Если известны угол сноса, путевая и воздушная скорости, магнитный курс самолета, то с помощью НЛ-10М можно опре­делить ветер. Для решения этой задачи рассмотрим навигацион­ный треугольник скоростей (рис. 7.11).
 
Решение навигационного треугольника скоростей
 
Из конца вектора воздушной скорости опустим на линию пу­ти перпендикуляр. Величина путевой скорости может быть пред­ставлена в виде суммы двух отрезков: ОВ и ВС, т. е. W=OB+ВС, откуда отрезок ВС= W—ОВ.
Из прямоугольного треугольника ОАВ следует, что отрезок ОВ = VсоsУС. Так как косинусы малых углов примерно равны 1, то отрезок ОВ можно принять равным V(OB ≈ V). Подставляя это значение ОВ в выражение для отрезка ВС, получаем: ВС= W—V=ΔU.
Из прямоугольных треугольников АВО и ABC имеем:
АВ = VtgУС=ΔUtg или VtgУC= ΔUtgα.
Запишем это равенство в виде следующей пропорции, имея в виду ее основное свойство:
tgУC/ΔU= tgα/V.
Решая эту пропорцию на НЛ-10М по шкалам 4 и 5, можно определить угол а (рис. 7.12), заключенный между линией фак­тического пути и метеорологическим направлением ветра. Изме­ряется этот угол от 0 до 90°. Зная величину угла а и используя шкалы 3 и 5 НЛ-10М, по теореме синусов определим скорость ветра (рис. 7.13).
Решение навигационного треугольника скоростей

Направление ветра рас­считывается по формулам:
δ = ФМПУ-(±α)
δ = ФМПУ ± 180°+ (± α).
 Первой формулой пользуются, когда   путевая   скорость меньше воздушной, т. е. при встречно-боковом ветре, а второй — при по­путно-боковом ветре, когда путевая скорость больше воздушной. Угол α берется со знаком плюс при правом сносе самолета и со знаком минус при левом сносе.
Для быстрого и правильного определения метеорологического направления ветра и его скорости необходимо запомнить следую­щие правила:
1. При попутном ветре (УС=0, α = 0°):
δ = ФМПУ ± 180°;    U = W — Vи.
2.  При встречном ветре (УС=0°, α=0°):
δ = ФМПУ;    U = Vи — W.
3.  При боковом ветре (W ≈ Vи, α=90°):
δ= ФМПУ —(±90°).
4.  При встречно-боковом ветре (W< Vи):  
δ = ФМПУ — (± α).
5.  При попутно-боковом ветре (W> Vи):
δ = ФМПУ ± 180°+ (± α).
Пример. Vи = 450 км/ч; МК = 50°; УС = + 7°; W = 490 км/ч. Определить направление и скорость ветра.
Решение. 1. Находим разность между путевой и истинной воздушной ско­ростью; ΔU = W — Vи =490 — 450 = + 40 км/ч. Ветер попутно-боковой
2.  Определяем угол α на НЛ-10М (см. рис. 7.12): α =+ 54°.
3.   Находим скорость ветра на НЛ-10М (см. рис. 7.13): U = 68 км/ч.
4.  Опрепеляем ФМПУ и метеорологическое  направление ветра
ФМПУ = МК + (± УС) = 50° + (+ 7°) = 57°;
δ = ФМПУ ± 180° + (±α) = 57° + 180° + (+ 54°) = 291°.
Понятие об эквивалентном ветре. Для упрощения выполнения некоторых навигационных расчетов пользуются эквивалентным ветром.
 
Понятие об эквивалентном ветре
Эквивалентным ветром Uэ называется условный ве­тер, направление которого всегда совпадает с ЛЗП, а его скорость в сумме с воздушной скоростью дает такую же путевую скорость, как и действительный ветер (рис. 7.14).
Эквивалентный  ветер опреде­ляется по   специальной   таблице,
которая помещается в руководстве по летной эксплуатации и пи­лотированию каждого типа самолета. Приближенно эквивалент­ный ветер можно определить по формуле
Uэ ≈ UсоsУВ.

Решение навигационного треугольника скоростей подсчетом в уме.


Подсчетом в уме определяют угол сноса, путевую скорость и курс следования, а также направление и скорость ветра по из­вестным значениям воздушной и путевой скоростей, магнитному курсу и углу сноса.
Угол сноса и путевую скорость можно определить, пользуясь формулами:
УС=Решение навигационного треугольника скоростейsinУВ; W = Vи ±UсоsУВ,по которым рассчитывается таблица значений углов сноса и пу­тевых скоростей для основных углов ветра (табл. 7.1). Эту таб­лицу необходимо знать на память.
Таблица 7. 1
Зависимость угла сноса и путевой скорости от угла ветра
 
Угол ветра, град
Угол сноса, град
Путевая скорость,  км/ч  
0 0 Vи + U
45 + 0,7УСмакс Vи + 0,7U 
90 + УСмакс
135 + 0,7УСмакс
Vи и – 0,7U
180 0 Vи  –  U
225 — 0,7УСмакс
Vи – 0,7U   
270 — УСмакс
315 — 0,7макс Vи + 0,7U    
         

Пример. Vи = 450 км/ч; ЗМПУ=;120°;  δ = 30°;   U=60 км/ч.  Определить УС, МКсл и W.
Решение. 1. Находим угол ветра:
УВ = δ ± 180° — ЗМПУ = 30° + 180° — 120° = 90°.
2.   Определяем угол сноса. Так как угол ветра равен 90°, то УС = УСмакс.
УСмакс = Решение навигационного треугольника скоростей  =+8°
3.    Определяем   путевую скорость    самолета.     Поскольку    ветер    боковой W ≈  Vи =450км/ч.
4.  Определяем курс следования:
МКсл = ЗМПУ — (± УС) = 120° —(+ 8°) = 112°.
Направление  и   скорость   ветра  в   некоторых   случа­ях можно определять подсчетом в уме.
При попутном ветре, когда УС = 0°, а путевая скорость больше воздушной скорости, направление и скорость ветра определяют­ся по приведенным выше формулам:
δ = ФМПУ ± 180°;   U = W —Vи
При встречном ветре, когда УС = 0°, а путевая скорость мень­ше воздушной скорости, направление и скорость ветра определя­ются по формулам:
δ = ФМПУ;    U = Vи —W.
При боковом ветре, когда угол сноса положительный (α = +90°) или отрицательный (α = —90°), а путевая скорость равна воздушной скорости, направление и скорость ветра определяются по формулам:
δ = ФМПУ-(±90°);    U = Решение навигационного треугольника скоростей.
Пример. МК=202°; УС= —12°; Vи = 450 км/ч; W = 450 км/ч. Определить направление и скорость ветра.
Решение. 1. ФМПУ=МК+(±УС) = 202°+(—12°) = 190°.
2. δ = ФМПУ — (± α) = 190° — (—90°) = 280°
3.  Решение навигационного треугольника скоростей

Распечатать ..

 
Другие новости по теме:

  • Навигационный треугольник скоростей, его элементы и их взаимозависимость
  • Учет влияния ветра на полет самолета - Ветер навигационный и метеорологи ...
  • Полет на радиостанцию
  • Определение навигационных элементов с помощью РСБН-2
  • Способы определения угла сноса в полете


  • Rambler's Top100
    © 2009