Warning: fopen(/var/www/fastuser/data/www/livit.ru/engine/cache/related_485.tmp): failed to open stream: пФЛБЪБОП Ч ДПУФХРЕ in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 337 Warning: fwrite() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 338 Warning: fclose() expects parameter 1 to be resource, boolean given in /var/www/fastuser/data/www/livit.ru/engine/modules/functions.php on line 339 Использование КС-6 в полете » Летательные аппараты - Авиационный моделизм и самолетовождение
www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Использование КС-6 в полете
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Шарнирное соединение из ниток
Шарнирное соединение из ниток (рис. 65). Надежность системы управления кордовой авиамодели — один из важ­нейших факторов успешного полета. Немаловажное значе­ние  имеет  и  то,  как  подвешены рули высоты и закрыл­ки. Отсутствие люфтов, лег­кость хода, живучесть — вот основные требования к этим элементам. На спортивных и учебных моделях отлично зарекомен­довали себя шарниры, изго­товле ...

» Включение и проверка работы системы «Трасса» перед полетом
Проверка работы системы «Трасса» может быть полной (про­водится техником РЭСОС один раз в течение трех суток с при­менением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется  на двух  точках  шкалы  указателя угла сноса ...

» Подготовка к полету с использованием РСБН-2
Опыт использования РСБН-2 показывает, что достаточно пол­ная реализация возможностей этой системы прежде всего зави­сит от заблаговременной  подготовки  данных  для ее применения и оперативностиработы экипажа в полете, поэтому экипажи са­молетов, на которых установлена   аппаратура   РСБН-2,   обязаны    в   период   предварительной подготовки к полету подготовить по всем участкам трассы необходим ...

» Бумажная модель планера «ДОСААФ»
Для изготовления модели планера «ДОСААФ» (рис. 18) кроме бумаги, ножниц, линей­ки и карандаша понадобится еще и клей. Лучше всего при­менять клей ПВА, а бумагу — из   альбомов  для   рисования. С рисунка по клеткам пере­носят форму фюзеляжа на сло­женную вдвое бумажную заго­товку и вырезают его. Затем таким же образом вырезают крыло, груз, лонжерон и киль. На шаблонах частей стрелкой указано ...

» Движение лопастей
Каждая лопасть ротора при полете автожира имеет три вида движения: поступательное движение вместе со всей машиной со скоростью V, вращательное вокруг оси ротора при установившейся авторотации с постоянной угловой скоростью Ω, периодическое маховое движение относительно горизонтального шарнира ГШ.

» Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...

» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и ука­затели: 1.  Щиток управления системой. 2.  Указатель угла сноса и путевой скорости. 3.  Задатчик угла карты, 4.  Счетчик координат. 5.  Переключатель «ДИСС—АНУ». 6.  Переключатель «Счетчик» («Вкл.—Выкл.»). 7.  Задатчик ветра.

» Пилотажная модель «Акро­бат»
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа. Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно корот ...

» Расчет вертикальной скорости снижения или набора высоты
В практике самолетовождения бывают случаи, требующие сме­ны эшелона полета. При необходимости диспетчер указывает эки­пажу время начала и окончания смены эшелона или задает учас­ток, на котором должно быть произведено снижение. На основа­нии указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке.

» Предотвращение случаев потери ориентировки
Для достижения безопасности самолетовождения экипаж обя­зан в течение всего полета сохранять ориентировку, т. е. знать местонахождение самолета. Современные средства самолетовож­дения обеспечивают сохранение ориентировки при полетах, как днем, так и ночью. Однако практика показывает, что еще встре­чаются случаи потери ориентировки. Это вызывает необходимость изучения ее причин и действий экипажа п ...

» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Схематическая модель пла­нера разработана ал­ма-атинскими авиамоделиста­ми
Схематическая модель пла­нера (рис. 23) разработана ал­ма-атинскими авиамоделиста­ми. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный па­ритель фитильным приспособ­лением для принудительной по­садки. Постройку такой «схематич­ки» начинают с крыла. Прежде всего заготовки кромок изго­тавливают с помощью спе­циально изготовленного при­способлени ...

» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элеме ...

» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА
Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1.  Произвести внешний осмотр  щитков управления   и   прибо­ров системы, установленных на самолете. 2.  Убедиться,   что горизонтальная   и    вертикальная    стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС   с помощью винтов с над­писью «К» и «Г» на КППМ д ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости
Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструмен­тальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на из­менение плотности воздуха.

» Перевод футов в метры и обратно
Футы переводятся в метры, а метры в футы по формулам: Hм = Hфуты:3,28; Hфуты = Нм·3,28. Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

» Спарка-тренажер
Как из­вестно, свой самый первый полет курсант выполняет не один, а вдвоем с инструктором на самолете с двойным управлением. Сначала управ­ляет инструктор, а обучаемый лишь слегка придерживает ручку и запоминает необхо­димые для полета манипуля­ции. И лишь на следующем этапе инициатива переходит к ученику. Однако инструктор и тут всегда начеку — в кри­тической ситуации он всегда может вмешат ...

» Формулы полных сил ротора
Имея выражения для элементарных сил, нетрудно получить полные силы одной лопасти, а затем и ротора. Это мы можем сделать, воспользовавшись уравнением махового движения лопасти и условием равенства нулю крутящего момента ротора при установившейся авторотации.

» Предполетная проверка НИ-50БМ
Для проверки НИ-50БМ перед полетом необходимо: 1.  Включить электропитание   прибора   по  переменному  и  по­стоянному току. 2.  Включить и подготовить к работе ГИК.    Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3.  Установить на автомате курса и задатчике ветра МУК=МК самолета. 4.  Ввести в задатчик ветра направлен ...

» Модель вертолета «Пэнни»
Модель вертолета «Пэнни» (рис. 54) разработал амери­канский авиамоделист Д. Буркхем. Этот миниатюрный вер­толет с резиновым мотором снабжен хвостовым винтом и Имеет   автомат  стабилизации. Основой модели является силовая рейка из сосны длиной 114 мм и сечением 5x5 мм. Сбоку приклеивают пластину из пенопласта толщиной 5 мм и закругляют по виду сбоку; получается своеобразный кор­пус модели. Сверху ...

» Сокращенные обозначения и условные знаки, принятые в самолетовождении
Точки и линииМС — место   самолета ИПМ — исходный   пункт   маршрута ППМ — поворотный   пункт   маршрута КО — контрольный   ориентир КЭ — контрольный   этап ЛЗП — линия   заданного   пути ЛФП — линия фактического пути АЛП — астрономическая   линия   положения РНТ — радионавигационная   точка ОПРС — отдельная   приводная   радиостанция РСБ ...

» Первые воздушные змеи
Воздушный змей сегодня не­редко воспринимается только как игрушка для детского раз­влечения. Но мало кто знает, что он имеет давнюю и интерес­ную историю. Первые воздушные змеи по­явились около четырех тысяч лет назад. Родина их — Китай. Самой распространенной была форма змея-дракона, что, воз­можно, и определило название «воздушный змей». Современ­ные воздушные змеи совершен­но не напоминаю ...

» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется отно­сительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса само­лета применяются различные способы отсчета ортодромических пу­тевых углов и курсов самолета, выбор которы ...

» Режимы работы, органы управления, указатели КС-6 и их назначение
В зависимости от решаемых задач и условий полета курсовая система  может  работать: 1) в   режиме гирополукомпаса   «ГПК»; 2)   в   режиме   магнитной   коррекции   «МК»; 3)   в режиме астрономической коррекции «АК».

» Модель самолета из пено­пласта
Модель самолета из пено­пласта (рис. 28) разработана авиамоделистами СЮТ г. Элек­тростали. За основу взят чер­теж модели самолета «Вилга-2» и полумакет чехословацких мо­делистов, изготовленный из бальзы. Строительный материал для этого микросамоле­та — пенопласт (упаковочный или ПС-4-40).

» Умножение и деление чисел при помощи НЛ-10М
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

» Защита для жиклера
Устанавливая ми­кродвигатели с передним рас­пределением на модели воз­душного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у мото­ров, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жик­лер. Выход из этого положения весьма прост: достаточно вы­пилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный пре­дох ...

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Механизация крыла учеб­ной модели
Механизация крыла учеб­ной модели (рис. 68). Три палки — две струны... Так мо­делисты в шутку говорят об учебных моделях. Те и в са­мом деле, как правило, цельнодеревянные: и крыло, и фю­зеляж, и стабилизатор с ки­лем — из липовых пластин. Ко­нечно, такие аппараты просты. Это их достоинство. Но, к сожалению, их летные каче­ства оставляют желать лучше­го — высокая удельная нагруз­ ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Использование КС-6 в полете
Самолетовождение » Полеты в особых условиях  |   Просмотров: 10855  
 
Курсовая система позволяет выполнять полеты с локсодроми­ческими и ортодромическими путевыми углами. Полеты по локсо­дромии рекомендуются в умеренном и тропическом поясах при ус­ловии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен быть разделен и средние ЗМПУ определены для каждой части. Полеты по ортодромии должны при­меняться в районе полюсов, а также в умеренном и тропическом поясах, когда участки маршрута перекрывают более 5° по долготе.
Использование режима «ГПК». Этот режим используется при полетах с ортодромическими путевыми углами — истинным (ОЗИПУ) или магнитным (ОЗМПУ). В большинстве случаев по­лет по ортодромическим участкам удобнее производить с ОЗМПУ, т. е. когда отсчет ортодромического курса производится от магнит­ного опорного меридиана.
 В этом случае необходимо:
1.  Перед вылетом проверить работоспособность   КС и устано­вить на пульте управления среднюю широту первого участка, а на УШ и КМ-4— магнитное склонение, равное нулю.
2.  На старте перед взлетом произвести согласование КС в ре­жиме «МК» и проверить соответствие показаний МК на УШ, УК-1 и УГА-1У взлетно-посадочному магнитному путевому углу, после чего   переключить   КС в   режим   «ГПК».
3.  После перевода КС в режим «ГГЖ» выдерживание заданно­го направления полета осуществлять относительно опорного маг­нитного меридиана  аэродрома вылета до выхода на следующий опорный  меридиан.
4.  После взлета выполнить маневр отхода от аэродрома и дать командиру корабля ОМК для следования по ЛЗП: ОМК = ОЗМПУ— (±УС).
5.  Периодически измерять угол сноса и уточнять курс следо­вания.
6.  Регулярно производить установку на пульте управления сред­ней  широты   участка   маршрута.
7.  Периодически,  между опорными  меридианами,    проводить проверку и корректировку показаний КС. Проверка выполняется с целью выявления ухода оси гироскопа гироагрегата.
Для проверки правильности показаний курсовой системы, работающей в режиме «ГПК», необходимо: отсчитать МК по стрелке «Г» указателя УГА-1У и перевести отсчитанный МК в ОМК по формуле
ОМК =МК +(±Δм.м.с) + (λо.м — λм.с)sinφср — (±Δм.о.м).
Для упрощения перевода МК в ОК необходимо к МК прибавить суммарную поправку, которая равна алгебраической сумме попра­вок, указанных у того меридиана, где находится самолет, минус поправка, указанная в знаменателе у опорного меридиана. Сум­марная поправка определяется по формуле Δ = σ + (±Δм.м.с) — (±Δм.о.м). Затем рассчитанный таким образом ОМК сравнить с ОМК по УШ. При расхождении курсов более чем на 2° произвести корректировку показаний КС.
Корректировка показаний КС — это работа по устранению ухода оси гироскопа за время полета самолета для обеспечения дальнейшего продолжения полета с ортодромическим курсом отно­сительно начального опорного меридиана. Корректировку произво­дят доведением отсчета ОМК на УШ до необходимого значения поворотом задатчика курса или введением поправки по шкале склонений УШ. Этот метод применяется при точном знании МС или когда невозможно использовать ДАК-ДБ-5 для определения ОК.
При полетах в высоких широтах контроль за правильностью показаний и их корректировка практически возможны только с помощью ДАК-ДБ-5.
В этом случае астрокомпас включают перед вы­летом. На вычислителе должны быть при этом установлены коор­динаты аэродрома вылета. В полете стрелка «А» указателя УГА-1У будет показывать ОИК относительно опорного истинного меридиа­на аэродрома вылета. Для проверки правильности показаний кур­совой системы ОИК по астрокомпасу переводят в ОМК и сравни­вают его с показанием УШ. В этом случае пользуются формулой: ОМК=ОИК— (± Δм.о.м).
При проведении корректировки следует иметь в виду, что отли­чие фактического ОК от ОК, отсчитанного на УШ, не должно пре­вышать 4—5° за 1 ч полета. Если эта величина больше указанной, курсовая система подлежит регулировке.
8.  После пролета каждого ППМ берется новый ОМК.
9.  При  пролете очередного опорного меридиана  переключить гироагрегаты, для  чего переключатель поставить   в    положение «Зап.».
На предшествующем участке переключатель гироагрегатов на­ходился в положении «Осн.», следовательно, запасный гироагрегат работал с магнитной коррекцией, отсчитывая осредненное стабилизированное текущее значение курса. После перевода пере­ключателя в положение «Зап.» показания магнитного курса запас­ного гироагрегата переходят на УШ и повторители. Эти показания и являются ОМК. После переключения гироагрегатов, не переходя на режим «МК», нажимают кнопку для быстрого согласования с магнитным меридианом основного гироагрегата, который будет в резерве. При пролете следующего опорного меридиана гироагрега­ты переключают в обратном порядке.
Рассмотренная методика использования КС в режиме «ГПК» является наиболее удобной, простой и ограничивает всякие пе­реключения на пульте управления КС. Это должно учитываться, так как КС имеет связь с автопилотом и при несоблюдении некото­рых особенностей работы с органами ее управления на автопилот могут поступать сигналы, которые могут изменить направление по­лета. Применение этой методики особенно целесообразно в поляр­ных районах, где горизонтальная составляющая геомагнитного по­ля доходит до 0,06 эрстеда или даже меньше. В этом случае ко­леблющееся текущее значение МК осредняется и стабилизируется гироагрегатом, находящимся в резерве, и после подключения его к УШ обеспечивает правильный отсчет ОМК.
Определение собственного ухода гироскопа и его учет. Курсо­вая система и ГПК-52 имеют механизмы азимутальной коррекции, с помощью которых компенсируется суточное вращение Земли и уход гироскопа в азимуте от несбалансированности. Добиться пол­ной компенсации ухода главной оси гироскопа невозможно. Курсо­вая система и ГПК-52 всегда имеют так называемый остаточный уход гироскопа в азимуте. Допустимая величина скорости собст­венного ухода гироскопа достигает 2 град/ч. В практике могут встречаться повышенные уходы (3—4 град/ч и более), что приво­дит к ошибкам в выдерживании заданного курса.
Явление остаточного ухода гироскопа требует периодической корректировки показаний курсовой системы и ГПК-52. Однако корректировка только устраняет накопившуюся ошибку за счет ухода гироскопа, но не позволяет учесть ее на оставшемся участ­ке маршрута.
Остаточный уход гироскопа можно учесть путем изменения скорости азимутальной коррекции регулировочным потенциомет­ром. Но этим методом в гражданской авиации пользоваться в по­лете не рекомендуется, так как регулировки, выполняемые раз­ными штурманами, могут снизить надежность курсовой системы и степень доверия к ее показаниям.
В полете собственный уход гироскопа можно уменьшить или полностью устранить с помощью широтного потенциометра уста­новкой некоторой условной широты. Для этого нужно знать угло­вую скорость ухода гироскопа. Практически ее определяют на основании двукратного сличения показаний КС (ГПК-52) с по­казаниями контрольного компаса, выдающего текущий магнитный, истинный или ортодромический курс.
Для определения и устранения собственного ухода гироскопа КС при полете с ОЗМПУ необходимо.
1.  В момент пролета точки коррекции отсчитать ОМК на УШ и  МК   по  стрелке   «Г»   указателя  УГА-1У.
2.  Определить фактический ортодромический курс по показа­нию стрелки «Г»:
ОМКф = МК + (± Δм.м.с) + (±α) — (± Δм.о.м).
3.  Сличить полученный ОМКф с ОМК, снятым с УШ, и    при  наличии расхождения, превышающего точность работы КС (±2°), произвести корректировку показаний   КС.
4.  Точно выдержать заданный курс по УШ до очередной точки коррекции (не менее 30 мин полета), снова отсчитать   ОМК   на УШ и МК по стрелке «Г». Определить фактический ОМК по пока­занию стрелки «Г» и сравнить его с показанием УШ. При наличии расхождений выполнить корректировку показаний КС.
5.  Определить угловую скорость ухода гироскопа, для чего ве­личину ухода гироскопа с момента предыдущей коррекции умно­жить на 60 и разделить на время полета в минутах между точ­ками коррекции. Расчет произво­дится по формуле: ωc = 60α/t, где ωс — угловая скорость ухода гиро­скопа, град/ч; α — величина угло­вого ухода гироскопа с момента предыдущей коррекции; t — вре­мя полета между   точками кор­рекции, мин.
6. Устранить уход гироскопа, сместив шкалу широт на пульте управления    относительно  ранее   установленной широты.  Если  курс  на
КС (ГПК-52) увеличивался (ωс 0), то увеличить.
Величина смещения шкалы зависит от угловой скорости ухода и широты места (табл. 23.1). Из таблицы видно, что в Северном по­лушарии возможности устранения положительной угловой скорости ухода гироскопа ограничены, особенно в средних и высоких широ­тах.
 
Использование КС-6 в полете

В Южном полушарии под влиянием суточного вращения Земли гироскоп уходит влево. Это улучшает возможности компенсации положительных уходов и ограничивает устранение отрицательных.
Пример. Долгота опорного меридиана λо.м =77°; долгота точки коррекции λм.с. = +71°; магнитное склонение в точке коррекции Δм.м.с = +8°; магнитное склонение в точке линии пути на опорном меридиане Δм.о.м =      + 11°; широта средняя φср=54°. С момента предыдущей коррекции прошло 45 мин. ОК = 303°; по стрелке «Г» МК=298°. Определить угловую скорость ухода ги­роскопа и устранить уход гироскопа широтным потенциометром.
Решение.   1. Определяем поправку на угол  схождения   меридианов:
σ= (λо.м — λм.с) sinφср  = (77° — 71°)·0,8 = + 5°.
2.   Рассчитываем фактический  ортодромический курс по  показанию   стрел­ки «Г»:
ОМКф = МК + (± Δм.м.с) + (±σ) — (± Δм.о.м) = 298° + (+ 8°) +  (+5°) — (+ 11°) = 300°.
3. Сравниваем  фактический  ортодромический курс с ортодромическим кур­сом, отсчитываемым по указателю штурмана:
σ = ОМКф — ОК = 300° — 303° = — 3°.
4.  Производим корректировку показаний КС.
5.  Определяем угловую скорость ухода гироскопа:
ωс = (α·60)/t = ((— 3·60)/45  = —180/45 = —4 град /ч.
6.  Находим для широты 54° величину смещения шкалы широт для  устра­нения ухода гироскопа: 6·4=24°.
7.   Устанавливаем на пульте  управления широту   на   24°   меньше  установ­ленной средней широты, т. е. 30°.
В случае значительных уходов гироскопа необходима регули­ровка КС в лабораторных условиях.
Использование режима «МК». В этом режиме на все указате­ли курсовой системы выдается магнитный курс. В связи с этим при использовании КС в режиме «МК» руководствуются общими правилами самолетовождения по магнитному компасу.

Распечатать ..

 
Другие новости по теме:

  • Зависимость между ортодромическим, истинным и магнитным курсами
  • Подготовка данных для применения КС-6
  • Режимы работы, органы управления, указатели КС-6 и их назначение
  • Использование курсовых приборов самолета Ан-24
  • Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэро ...


  • Rambler's Top100
    © 2009