www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Планер
Планер — летательный аппа­рат тяжелее воздуха, состоя­щий из следующих основных частей: крыло, фюзеляж, хвос­товое оперение (стабилизатор и киль) и шасси. В зависи­мости от назначения раз­личают планеры учебные и спортивные. Крыло создает подъемную силу во время полета, имеет рули поперечного управления— элероны. Фюзеляж — корпус, со­единяющий все части кон­струкции в одно целое. ...

» Магнитные поля, действующие на картушку компаса, установленного на самолете
На картушку магнитного компаса, установленного на самолете, действуют следующие поля: 1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану); 2)  постоянное магнитное поле самолета; 3)   переменное магнитное поле самолета; 4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

» Наука о точном, надежном и безопасном вождении воздушных судов
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую. Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное ...

» Полет на радиостанцию
Полет на радиостанцию может быть выполнен пассивным или активным способом. В свою очередь активный полет на радиостанцию может быть выполнен одним из следующих способов; 1)   с выходом на ЛЗП; 2)   с выходом в КПМ (ППМ); 3)   с любого направления подбором курса следования. Пеленги, определяемые при полете на  радиостанцию,  можно использовать для контроля пути по направлению.

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Вывод корд из крыла
Оплетка для троса (рис. 64). Много хлопот доставляет не­опытным моделистам-кордови-кам проблема вывода тросов управления из крыла. Слу­чайный их перегиб — и заеда­ние в системе управления поч­ти всегда грозит аварией для летательного аппарата. Один из самых просты и эффективных способов, поз­воляющих избежать, подобных неприятностей,— использова­ние спиральных пружин, вклеенных в закон ...

» Инструмент и материалы для авиакружка
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр ...

» Использование РПСН-2 в режимах «Снос» и «Снос точно»
Режимы «Снос» и «Снос точно» предназначены для определе­ния угла сноса самолета. Первый используется при полетах до вы­соты 5000 м, а второй — при полетах на высотах от 5000 м и бо­лее. Измерение угла сноса основано на использовании эффекта Доп­лера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о ...

» Расчет ИПС при полете по ортодромии
При полете по ортодромии для прокладки радиопеленга на карте нужно рассчитать ИПС (рис. 23.11). Когда курс выдержи­вается относительно магнитного опорного меридиана, ИПС рас­считывается по следующей формуле: ИПС = ОМК + (± Δм.о.м) + КУР ± 180° — (± α), где σ = (λо.м — λр) sin φcp.

» Определение путевой скорости самолета
При полете самолета от радиолокатора и на радиолокатор пу­тевая скорость определяется в следующем порядке: 1.  Запросить у диспетчера место самолета и заметить время. 2.  Через 7—10 мин полета снова запросить место самолета и заметить время. 3.  Определить пройденный самолетом путь как разность между полученными дальностями:   Sпр =Д2—Д1 или Sпр=Д1—Д2 4.  По пройденному расстояни ...

» Решение навигационного треугольника скоростей
Решить навигационный треугольник скоростей — это значит по его известным элементам найти неизвестные. Решение нави­гационного треугольника скоростей можно осуществить: 1)   графически (на бумаге); 2) с помощью навигационной линейки, навигационного  расчетчика или ветрочета; 3)   приближенно подсчетом в уме.

» Игры и соревнования. Воздушный «почтальон»
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема. Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх ...

» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Использование РСБН-2 для захода на посадку
РСБН-2 при заходе на посадку позволяет: 1.  Производить «вписывание» самолета  в  установленную для данного аэродрома схему захода на посадку. 2.  Осуществлять контроль  полета по  установленной   схеме. 3.  Выводить самолет в зону курсового радиомаяка.

» Определение места самолета
Место самолета определяется с целью полного контроля пути, определения навигационных элементов полета и восстановления потерянной ориентировки. В зависимости от условий полета и навигационной обстановки МС может быть определено: по одному радиопеленгатору; по двум радиопеленгаторам; по радиопеленгатору и радиостанции.

» Компенсация радиодевиации
Радиодевиация компенсируется в следующем порядке: 1.  Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки. 2.  Снять скобу с указателя радиодевиаций.

» Определение навигационных элементов на контрольном этапе
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно ...

» Азимутальные проекции
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проек ...

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Умножение и деление чисел при помощи НЛ-10М
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

» Обозначения
Размеры автожираСкорости и углы.

» Парусная тележка
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 м ...

» Учет влияния ветра на полет самолета - Ветер навигационный и метеорологический
Воздушные массы постоянно движутся относительно земной поверхности в горизонтальном и вертикальном направлениях. Го­ризонтальное движение воздушных масс называется ветром. Ве­тер характеризуется скоростью и направлением. Они изменяют­ся с течением времени, с переменой места и с изменением высоты. С увеличением высоты в большинстве случаев скорость вет­ра увеличивается, а направление изменяется. На ...

» Выход на радиостанцию с нового заданного направления
Выход на радиостанцию аэродрома с нового заданного на­правления осуществляется только по указанию диспетчера в це­лях обеспечения безопасности полета. Выходить на новую ЛЗП приходится при заходе на посадку по кратчайшему расстоянию, на, маршруте и в учебных полетах. Применяются следующие способы выхода на новую ЛЗП: а)   с постоянным МК выхода; б)   с постоянным КУР выхода.

» Модель вертолета чешских авиамоделистов
Модель вертолета чешских авиамоделистов (рис. 53) на­поминает настоящий гели­коптер. Фюзеляж заодно с килем вырезают из пластины пено­пласта толщиной 5 мм и по периметру фигуры окантовы­вают липовыми рейками сече­нием 5X1 мм. В качестве силовой балки используют сос­новую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшип­ник винта, а с другого при­вязывают крючок из прово­ ...

» Механизация крыла учеб­ной модели
Механизация крыла учеб­ной модели (рис. 68). Три палки — две струны... Так мо­делисты в шутку говорят об учебных моделях. Те и в са­мом деле, как правило, цельнодеревянные: и крыло, и фю­зеляж, и стабилизатор с ки­лем — из липовых пластин. Ко­нечно, такие аппараты просты. Это их достоинство. Но, к сожалению, их летные каче­ства оставляют желать лучше­го — высокая удельная нагруз­ ...

» Определение радиодевиации
Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или види­мой радиостанции.

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Кордовая модель самолета «Универсал»
Универсальную кордовую модель самолета (рис. 42) разработали юные техники Ти­мирязевского района Москвы. Их модель воздушного боя после небольших дополнений становится пилотажной. В ней удачно сочетаются и маневрен­ность и устойчивость, что позволяет вести воздушный бой и выполнять фигуры пило­тажного комплекса. В то же время эту модель не отнесешь к категории сложных, она вполне доступна для изго ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 

 Курсы самолета девиация магнитных компасов
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 6772  
 
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.
Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно принимают, что северный магнитный полюс, расположенный в северной части Канады, обла­дает южным магнетизмом, т. е. притягивает северный конец маг­нитной стрелки, а южный магнитный полюс, расположенный в Ан­тарктиде, обладает северным магнетизмом, т. е. притягивает к себе южный конец магнитной стрелки (рис. 3.1).

Читать дальше ..

 Девиация компаса и вариация
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9759  
 
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают.
Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к западу (влево) со знаком минус.

Читать дальше ..

 Курсы самолета
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 19771  
 
Курсом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета отно­сительно меридиана.
Курс самолета может быть истинным, магнитным и компасным в зависимости от меридиана, от которого он отсчитывается.
Истинным курсом ИК называется угол, заключенный между северным направлением истинного меридиана, проходящего через самолет, и продольной осью самолета.

Читать дальше ..

 Путевые углы и способы их определения
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 11277  
 
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7).
Заданным  магнитным путевым   углом   ЗМПУ   называется       угол,     заключенный между северным    направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и измеряется на карте при помощи транспортира по среднему истинному меридиану данного участка маршрута с последующим учетом магнитного склонения.

Читать дальше ..

 Пеленг и курсовой угол ориентира
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 10519  
 
Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного ме­ридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часо­вой стрелки от 0 до 360°.

Читать дальше ..

 Списывание девиации магнитных компасов
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5305  
 
Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвест­на, практически нельзя, так как она может достигать больших зна­чений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, электро- и радиооборудова­ния. Однако эта мера не позволяет полностью устранить девиацию. Поэтому компасы снабжены девиационными приборами, позво­ляющими уменьшить девиацию. Остаточная девиация списывает­ся, заносится в график и учитывается при переводе курсов.

Читать дальше ..

 Магнитные поля, действующие на картушку компаса, установленного на самолете
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 7106  
 
На картушку магнитного компаса, установленного на самолете, действуют следующие поля:
1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану);
2)  постоянное магнитное поле самолета;
3)   переменное магнитное поле самолета;
4)   электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

Читать дальше ..

 Магнитные силы, действующие на стрелку компаса. Формула девиации
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 6579  
 
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил.
1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от курса самолета. Ее величина изменяется с изме­нением магнитной широты места. Эта сила стремится установить стрелку компаса вдоль магнитного меридиана и девиации не вы­зывает (рис. 3.12).

Читать дальше ..

 Сущность устранения (компенсации) полукруговой девиации
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5467  
 
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

Читать дальше ..

 Назначение и устройство девиационного пеленгатора
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 7129  
 
Девиационный пеленгатор предназначен для определения маг­нитных пеленгов ориентиров, фактического МК самолета и уста­новки последнего на заданный МК. Устройство пеленгатора пока­зано на рис. 3. 15. Визирная рамка 3 состоит из глазного (с про­резью) и предметного (с нитью) диоптров. Она может вращаться вокруг вертикальной оси относительно азимутального лимба 1 или быть застопоренной. С помощью индекса 4 обозначается продоль­ная ось самолета. Уровень 5 служит для установки лимба в гори­зонтальное положение, а шаровой шарнир 7 — для установки в заданном положении. При помощи кронштейна 8 девиационный пе­ленгатор крепится на треноге или на самолете.

Читать дальше ..

 Определение магнитного пеленга ориентира с помощью девиационного пеленгатора
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5045  
 
Для определения МПО необходимо:
1)  установить треногу в центре площадки, где будет списывать­ся девиация;
2)   закрепить пеленгатор на треноге и установить его в горизон­тальное положение по уровню;
3)   отстопорить лимб и магнитную стрелку;
4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб;
5)   разворачивая визирную рамку и наблюдая через    прорезь глазного диоптра, направить нить предметного диоптра на выбран­ный ориентир;
6)   против риски предметного диоптра по шкале лимба отсчи­тать МПО.
 

Читать дальше ..

 Установка самолета на заданный магнитный курс
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5735  
 
Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как
Δк = МК - КК.
Самолет устанавливается на заданный МК:
1)   пеленгованием продольной оси самолета;
2)   по магнитному пеленгу ориентира.

Читать дальше ..

 Подготовка к выполнению и выполнение девиационных работ
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 10404  
 
При подготовке к выполнению девиационных работ необходимо:
1)   проверить состояние девиационного пеленгатора и исправ­ность его магнитной системы;
2)   выбрать площадку для девиационных работ, удаленную не менее чем на 150—200 м от стоянок самолетов, строений и линий высоковольтных передач; площадка должна быть ровной и иметь хороший обзор;
3)  измерить из центра площадки при помощи    девиационного пеленгатора магнитные пеленги   одного-двух   ориентиров, удален­ных не менее чем на 3—5 км;
4)   проверить наличие штатного оборудования на самолете;
5)  осмотреть компас, проверить его исправность и определить угол застоя и время успокоения картушки;
6)  установить в нейтральное положение магниты девиационного прибора, а у компаса ГИК-1, кроме того, установить регулировоч­ные винты лекала коррекционного механизма в средние    положе­ния;
7)   подготовить протокол    выполнения    девиационных    работ, бланк графика и антимагнитную отвертку.

Читать дальше ..

 Определение и устранение девиации гироиндукционного компаса ГИК-1
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 6053  
 
При устранении девиации гироиндукционного компаса ГИК-1 необходимо:
1. Установить регулировочные винты коррекционного механизма в их среднее положение.
При выпуске компаса с завода регулировочные винты лекаль­ного устройства устанавливаются в среднее положение, при кото­ром коррекционный механизм обеспечивает устранение остаточной девиации в пределах ±6°. В процессе предыдущего устранения девиации регулировочные винты смещаются в различные положе­ния.

Читать дальше ..

 Списывание девиации на самолетах с ГТД
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 3945  
 
На самолетах с ГТД датчики дистанционных компасов установ­лены в местах, где, как показали результаты исследований, дейст­вие железных масс незначительное, поэтому девиация компасов не превышает ±1°. На этом основании главный инженер МГА из­дал специальное указание, согласно которому:

Читать дальше ..

 Назначение и принцип устройства навигационной линейки НЛ-10М
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 8521  
 
Навигационная линейка НЛ-10М является счетным инструмен­том пилота и штурмана и предназначена для выполнения необхо­димых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающих в определенном масш­табе логарифмы этих чисел.

Читать дальше ..

 Шкалы навигационной линейки и их назначение
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 9203  
 
Навигационная линейка имеет не равномерные шкалы, а лога­рифмические. При решении задач с помощью НЛ-10М использует­ся одновременно две, а иногда и больше шкал, которые называют­ся смежными.

Читать дальше ..

 Умножение и деление чисел при помощи НЛ-10М
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 7148  
 
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти.
Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

Читать дальше ..

 Определение значений тригонометрических функций углов
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 5381  
 
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5.
Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в долях единицы). Значение косинуса угла α отсчитыва­ется против угла 90° — α (рис. 4.3).

Читать дальше ..

 Умножение данного числа на тригонометрические функции углов
Самолетовождение » Навигационные элементы полета и их расчет  |    Просмотров: 6978  
 
Умножение данного числа на синус и косинус угла на НЛ-10М производится по шкалам 3 и 5, а умножение на тангенс и котангенс угла — по шкалам 4 и 5. Для умножения числа на синус и косинус угла а необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на заданное число и против угла α шкалы 3 отсчи­тать на шкале 5 искомое произведение числа на синус угла α, a против угла 90° — α — искомое произведение числа на косинус уг­ла α (рис. 4.4).

Читать дальше ..

Rambler's Top100
© 2009