www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посадку
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Карты, применяемые в авиации - Назначение карт
В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1)   прокладки и изучения маршрута полёта; 2)   измерения путевых углов и   расстояний    между   пунктами маршрута; 3)   определения географических координат пунктов; 4)   нанесения точек расположения радиотехнических    средств, обеспечивающих полет; 5)   получения ...

» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Безопасная высота полета и ее расчет
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от ...

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Использование РПСН-2 в режимах «Снос» и «Снос точно»
Режимы «Снос» и «Снос точно» предназначены для определе­ния угла сноса самолета. Первый используется при полетах до вы­соты 5000 м, а второй — при полетах на высотах от 5000 м и бо­лее. Измерение угла сноса основано на использовании эффекта Доп­лера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о ...

» Расчет показания широкой стрелки КУС для заданной истинной скорости
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V). Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

» Игры и соревнования с моде­лями планеров
Соревнования — это итог ра­боты каждого авиамоделиста. В них проверяется не толь­ко качество моделей, но и умение их конструкторов ис­пользовать полученные знания. В практике авиационного мо­делизма широко известны не только соревнования, но и игры, особенно с бумажными моделями. Перед началом стартов все участвующие в них планеры необходимо над­писать — сделать опознава­тельные знаки. ...

» Поперечная балансировка автожира
Если ось ротора и ц. т. автожира лежат в плоскости симметрии автожира (фиг. 92), то при установившемся прямолинейном полете на автожир буду действовать следующие крепящие моменты: 1)    момент на головке ротора согласно уравнению (78);   2)    момент от поперечной силы, равный:   3)    при моторном полете реактивный момент пропеллера, равный:  

» Условия ведения визуальной ориентировки
На ведение визуальной ориентировки оказывают влияние: 1. Характер пролетаемой   местности.    Это условие имеет первостепенное значение  при определении  возможности  и удобства ведения визуальной ориентировки. В районах, насыщен­ных крупными и характерными ориентирами, вести визуальную ориентировку легче, чем в районах с однообразными ориентирами. При полете над безориентирной местностью или над ...

» Поликонические проекции
По принципу построения поликонические проекции незначи­тельно отличаются от конических. Они являются дальнейшим усо­вершенствованием конических проекций. В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к парал­лелям или секущих земной шар по заданным параллелям. На по­верхность каждого конуса переносится небольшой шаровой пояс земной ...

» Пилотажная модель «Акро­бат»
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа. Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно корот ...

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Двухмоторный электролет
Двухмоторный электролет был создан в результате даль­нейшего  развития  моделей с электродвигателем. Демон­страционные полеты такого аппарата вызывают большой интерес в любой аудитории, будь то школа или пионерский лагерь; они хорошо смотрятся на слетах, фестивалях и празд­никах. Двухмоторная схема модели позволяет повысить ее энерговооруженность, добить­ся надежности полета на от­крытом воздухе.

» Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) =   =   =111 км. 1ґ дуги меридиана (экватора) =   = 1,852 км = 1852 м.

» Инструмент и материалы для авиакружка
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр ...

» Ортодромия и локсодромия
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных  линий пути имеет определенные свойства. Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. ...

» Дирижабли
Конструктивно      различают мягкие, полужесткие и жесткие дирижабли. У мягких дирижаб­лей кабина и двигатель крепят­ся на стропах к оболочке из газонепроницаемой ткани. У по­лужестких — оболочка из ткани, а гондола и моторы закреплены на килевой металлической ферме.   Жесткие   дирижабл имеют, каркас из шпангоутов и стрингеров, обтянутых легко и прочной тканью. Силовая ус­тановка  жесткого ...

» Схематическая модель са­молета
Схематическая модель са­молета (рис. 29) немного слож­нее описанных ранее. Прежде чем приступить к постройке Модели, необходимо сделать ее рабочий чертеж (в нату­ральную величину). Порядок Работы может быть такой. Фюзеляж делают из прямо­слойной сосновой или липо­вой рейки длиной 800 мм, сечением 12Х 10 мм, к хвосто­вой части сечение можно уменьшить до 8X6 мм.

» Кордовая учебно-тренировочная модель самолета
Кордовая учебно-трениро­вочная модель (рис. 33). По­стройка именно такой модели наиболее оправдана для даль­нейшего знакомства с катего­рией кордовых моделей. Работу над моделью мож­но начать с изготовления ра­бочего чертежа.

» Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...

» Выход на исходный пункт маршрута
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел ...

» Расчет времени и места начала снижения
Выход на аэродром посадки выполняется на указанной дис­петчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром. Рис. 5.6. Расчет времени набора высоты  

» Подготовка к проведению радиодевиационных работ
Подготовка к проведению радиодевиационных работ включает: 1. Подготовку девиационного пеленгатора, бланков протоколов выполнения радиодевиационных работ и бланков графиков. 2.  Выбор для выполнения радиодевиационных работ площадки, удаленной не менее чем на 150—200 м    от    стоянок    самолетов, строений и линий высоковольтных передач.    Площадка    должна быть горизонтальной, в направле ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Собственная устойчивость автожира
Благодаря шарнирному креплению лопастей ротора автожиру присуща собственная статическая устойчивость в форме маятниковой устойчивости, проявляющаяся в особенности при крутых спусках. Действительно, результирующая аэродинамических сил всегда проходит через втулку ротора, которую можно рассматривать как точку привеса для всего автожира. Центр тяжести автожира лежит под втулкой, отстоя от нее по высо ...

» Змей-вертушка
Змей-вертушка (рис. 3). В основе полета этого змея «эф­фект Магнуса». Что это такое? В 1852 году немецкий ученый Г. Магнус обнаружил эффект обтекания воздухом вращаю­щейся трубы: воздушная струя, обтекающая трубу поперек ее оси, отклоняется в направлении вращения. Если разрезать тру­бу (цилиндр) вдоль оси попо­лам и сместить обе половинки друг относительно друга, полу­чится вертушка. Цилиндр будет ...

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Авторотация несущего винта-ротора
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс ...

» Требования безопасности самолетовождения
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

» Умножение и деление чисел при помощи НЛ-10М
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посадку
Самолетовождение » Полеты в особых условиях  |   Просмотров: 15824  
 
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

Кроки аэродрома (аэродром условный)

Рис. 22.1. Кроки аэродрома (аэродром условный)

При выполнении маневра снижения и захода на посадку в сложных метеоусловиях экипаж использует специальное бортовое оборудование самолета и наземные системы посадки. В настоящее время многие аэродромы гражданской авиации оборудованы сов­ременными системами посадки, а некоторые типы самолетов — си­стемами автоматического захода на посадку.
Полеты воздушных судов гражданской авиации в районе аэро­дрома выполняются по схемам, установленным для данного аэро­дрома. Они разрабатываются в соответствии с действующей «Ме­тодикой расчета и построения схем захода на посадку самолетов и вертолетов гражданской авиации», которая устанавливает единый подход к расчету и построению схем   захода   на   посадку   для   любых   аэродромов   и   различных  типов самолетов с учетом безопасности, экономичности   и   интенсивности полетов.
В гражданской авиации применяются следующие схемы сниже­ния и захода на посадку:
1)   с  прямой;
2)   по прямоугольному маршруту (малому и большому);
3)   отворотом   на   расчетный угол;
4)   стандартным   разворотом;
5)   с   обратного   направления.
Схемы снижения и захода на посадку сводятся по определен­ным направлениям и помещаются в «Сборник аэронавигационных данных аэродромов по воздушным трассам СССР».
 
Схема захода на посадку (в плане и в профиле)

Рис. 22.2. Схема захода на посадку (в плане и в профиле)
 
В   Сборнике   для   каждого   аэродрома   помещены:
кроки   аэродрома;
схемы снижения и захода на посадку в плане и в профиле;
схемы выхода из района аэродрома после взлета;
минимумы для взлета и посадки воздушных судов по ППП и ПВП для каждого типа воздушного судна, посадочного курса и системы посадки;
схемы воздушных зон крупных центров страны.
На кроки аэродрома (рис. 22.1) нанесены: привязка аэродрома к ближайшему крупному пункту с указанием направления и рас­стояния, взлетно-посадочные полосы с указанием типа покрытия и размеров их в метрах, номера ВПП, контрольная точка аэродрома (КТА) с указанием превышения ее над уровнем моря (превыше­ние КТА указывается вверху, в заглавии), превышение порогов (торцов ВПП) над уровнем моря, концевые и боковые полосы бе­зопасности и их размеры в метрах, рулежные дорожки (РД) и их номера, перрон, аэродромные и другие сооружения, местополо­жение радиотехнических и светотехнических средств посадки.
На схемы снижения и захода на посадку (рис. 22.2) в плане на­несены:
магнитные путевые углы на всех участках маневра;
время полета на отдельных участках для штилевых условий;
курсовые углы радиостанций от основных точек маневра, ази­муты и дальности от радиомаяка РСБН до основных точек манев­ра;
прямоугольные координаты основных точек маневра для при­менения автоматических систем захода на посадку;
высоты полета самолетов по давлению 760 мм рт. ст. и отно­сительно уровня аэродрома в основных точках маневра (высоты полета относительно уровня аэродрома указываются в скобках);
МПУ  подхода   к  точкам   вписывания в   схему;
высота аэродрома относительно уровня моря и безопасная высота полета в зоне взлета и посадки (МБВ);
высоты местности и высоты препятствий относительно КТА аэродрома (указываются в скобках);
места установки БПРМ, ДПРМ, радиомаяков РСБН и других средств обеспечения захода на посадку;
характерные  линейные   и  площадные ориентиры;
магнитное склонение;
ограничительные пеленги (МПС), рубежи ограничений и запре­щений.
Для схем захода приняты следующие обозначения выполнения маневров: маневр подхода в район вписывания в схему по прибо­рам на эшелоне нанесен сплошной линией, со снижением (по крат­чайшему пути) —двумя точками и тире, маневр внеочередного вы­хода на посадку из зоны ожидания—одной точкой и тире, маневр визуального захода на посадку — пунктирной линией.
На схеме в профиле  (см. рис. 22.2)   нанесены:
линии подхода, маневр снижения и захода на посадку с ука­занием времени полета на отдельных участках;
исходная высота начала маневра;
высота и эшелон перехода;
естественные и искусственные препятствия в секторе подхода с указанием их высоты относительно уровня аэродрома.
На схеме в профиле также указаны высоты подхода, входа в глиссаду, пролета приводных радиостанций и других контрольных точек схемы снижения и .захода на посадку, удаления ДПРМ и БПРМ от торца ВПП, их частота и позывные, угол наклона глис­сады (УНГ).
Необходимые для полета сборники выдаются экипажу на борт перед полетом. В каждом аэропорту, кроме рабочих, имеются конт­рольные сборники. В период предварительной и предполетной под­готовки к полету штурман самолета обязан проверить правиль­ность внесения изменений в рабочий сборник по контрольному сборнику. Без сверки полученного экипажем бортового экземпляра сборника с контрольным экземпляром выпускать экипаж в полет запрещается.
Заход на посадку с прямой является самым экономичным спо­собом и применяется для всех воздушных судов, когда рельеф местности и воздушная обстановка позволяют снижаться с марш­рута визуально (по ПВП) на высоту, равную высоте входа в глис­саду на расстоянии 25—30 км до ВПП (рис. 22.3).
При непрерывном радиолокационном контроле за движением воздушных судов в процессе снижения заход на посадку с прямой допускается также и при невидимости пролетаемой местности (по ППП).
 
Схемы снижения и захода на посадку

 
Заход на посадку с прямой применяется, когда направление подхода к аэродрому совпадает с направлением посадки или отли­чается от него в точке начала го­ризонтального полета на угол не более 45°.
В горной местности воздуш­ные суда выводятся на ДПРМ (БПРМ, ОПРС) на безопасном эшелоне с последующим их сни­жением по установленной схеме  захода на посадку.
Для захода на посадку с пря­мой командир воздушного судна по указанию диспетчера занимает исходную высоту начала сниже­ния на расстоянии 80—100 км до аэродрома посадки. Снижение с исходной высоты выполняется на скорости не более 460 км/ч по прибору и вертикальной скоростью 5—10 м/сек с расчетом подхода к аэродрому за 25—30 км на высоте горизонтального полета, рав­ной высоте входа в глиссаду (режим полета указан применитель­но к самолету Ан-24).
При достижении заданной высоты скорость полета постепенно уменьшается до 300 км/ч по прибору. Затем выпускаются шасси и закрылки и выполняется маневр выхода на предпосадочную пря­мую.
После входа в глиссаду самолет переводится в режим сниже­ния с расчетной вертикальной скоростью и скоростью планирова­ния 210—200 км/ч по прибору в зависимости от полетного веса. ДПРМ и БПРМ должны быть пройдены на высотах, указанных в схеме для данного аэродрома.
Заход на посадку по малому прямоугольному маршруту (рис. 22.4) применяется, когда в районе аэродрома посадки нет других воздушных судов, препятствующих подходу к аэродрому на сниже­нии, или когда невозможен заход на посадку с прямой.
Для захода на посадку по малому прямоугольному маршруту самолет подводится к аэродрому с посадочным курсом или близким к нему. После выхода на ДПРМ (БПРМ) на исходной высоте нача­ла маневра для захода на посадку выполняется разворот на 180° со снижением и самолет выводится на курс, обратный посадочному. Скорость по прибору выдерживается не более 460 км/ч, вертикаль­ная скорость снижения — 8—10 м/сек.
 
Схемы снижения и захода на посадку
 
В процессе разворота при достижении высоты полета по кругу скорость полета уменьшается до 300 км/ч по прибору. На траверзе ДПРМ выпускаются шасси, и полет продолжается к точке третьего разворота на скорости 280—300 км/ч в течение времени, установ­ленного согласно данной схеме. По истечении времени или при КУР = КУР3 выполняется третий разворот на скорости 280 км/ч по прибору с креном 15°. После третьего разворота самолет следует под прямым углом к предпосадочной прямой. По команде выпускаются закрылки на 15°, устанавливается скорость 250 км/ч по прибору и на этой ско­рости при КУР = КУР4 выполняется четвертый разворот на поса­дочный курс с креном 15°. До входа в глиссаду закрылки довыпускаются на угол 38°. После входа в глиссаду снижение выполняет­ся аналогично снижению при заходе на посадку с прямой.
В ряде случаев для захода на посадку по малому прямоуголь­ному маршруту самолет Ан-24 выводится на ДПРМ на установлен­ной высоте полета по кругу. Так как далее самолет должен следо­вать по прямоугольному маршруту на скорости около 300 км/ч, то после выхода на ДПРМ необходимо: выполнить первый разворот с креном 15°; после окончания первого разворота пройти в направ­лении, перпендикулярном направлению посадки, в течение расчет­ного времени t2; выполнить второй разворот на курс, обратный по­садочному; далее завершить полет по прямоугольному маршру­ту, как указано выше. В тех случаях, когда самолет выводится на аэродром с курсом, отличающимся от посадочного более чем на 45°, выполняется до­полнительный маневр для вписывания в схему малого прямоуголь­ного маршрута. Порядок выполнения дополнительного маневра указывается на схемах.
Заход на посадку по большому прямоугольному маршруту при­меняется, когда выход к аэродрому ограничен высотой подхода по условиям рельефа, интенсивностью воздушного движения и метео­условиями. Основой для построения этой схемы захода на посадку служит малый прямоугольный маршрут.
Началом маневра является ДПРМ, выход на который производится в нижнем воздушном пространстве на эшелонах, располо­женных выше исходной высоты для малого прямоугольного марш­рута (рис. 22.5). После выхода на ДПРМ самолет с посадочным курсом переводится в режим снижения с вертикальной скоростью 8—10 м/сек и скоростью по прибору не более 460 км/ч. Полет от ДПРМ продолжается в течение установленного времени до высоты начала разворота на 180°. По истечении указанного в схеме време­ни выполняется разворот на 180° с сохранением прежней скорости по прибору и вертикальной скорости снижения.
 
Схемы снижения и захода на посадку
 
После разворота на курс, обратный посадочному, продолжает­ся снижение с сохранением прежнего режима до высоты полета по кругу. По достижении этой высоты снижение прекращается и са­молет переводится в режим горизонтального полета с погашением скорости по прибору до 300 км/ч. От траверза ДПРМ заход выпол­няется аналогично заходу на посадку по малому прямоугольному маршруту.
Заход на посадку по большому прямоугольному маршруту можно выполнять и при выходе самолета к аэродрому с курсом, обратным посадочному, или под углом к ВПП. В этом случае ука­зывается вспомогательная точка, от которой выполняется маневр выхода на ДПРМ для входа в схему захода на посадку.
Заход на посадку отворотом на расчетный угол применяется, когда самолет подходит к аэродрому с курсом, обратным направ­лению посадки, или близким, к нему, а рельеф местности или дру­гие ограничения не позволяют выполнять снижение в направлении к траверзу ДПРМ.
Заход на посадку отворотом на РУ выполняется в такой после­довательности:
1.  Самолет выводится на ДПРМ на исходной высоте, указанной в схеме (рис. 22.6).
2.  В момент пролета ДПРМ выполняется отворот на расчетный угол. Курс после отворота и время полета до разворота на поса­дочный   курс   указываются   на  схеме   захода.
3.  По  истечении  заданного времени  полета выполняется  раз­ворот  на   посадочный   курс.
4.  Снижение самолета начинается с момента пролета ДПРМ и продолжается до выхода на высоту горизонтального полета, рав­ную высоте входа в глиссаду.
5.  После выхода на посадочный курс заход выполняется анало­гично   заходу   на  посадку   с прямой.
Заход на посадку стандартным разворотом (22.7) применяется, когда направление подхода к ДПРМ отличается от курса, обратного посадочному, на угол не более 45°, а рельеф местности и дру­гие ограничения    не позволяют выполнять заход на посадку    по другим схемам.
Заход на посадку стандарт­ным разворотом выполняется в следующем порядке:
1.  После   выхода     на  ДПРМ на исходной высоте, равной    высоте входа    в   глиссаду, берется курс, равный обратному посадочному. С этим курсом самолет сле­дует в горизонтальном полете в течение установленного времени, указанного в схеме.
2.  По истечении установленного времени выполняется указан­ный   в   схеме  стандартный   разворот.
3.  После выхода из разворота на посадочный курс полет выпол­няется горизонтально в течение 60 сек до точки входа    в глиссаду.
4.  После входа в глиссаду дальнейший заход выполняется ана­логично   заходу с прямой.
Заход на посадку с обратного направления (рис. 22.8) приме­няется на аэродромах, оборудованных радиотехническими средст­вами посадки только с одного (основного) направления, когда по воздушной или наземной обстановке выполнить посадку с этого направления невозможно. В этом случае снижение на высоту кру­га осуществляется по любой из установленных схем. Дальнейший заход на посадку выполняется визуально с обратного направления по прямоугольному маршруту или стандартным разворотом.
 
Схемы снижения и захода на посадку
Схемы снижения и захода на посадку
 
Обязанности командира и штурмана корабля при подходе к аэродрому посадки. Командир корабля при подходе к аэро­дрому посадки обязан:
1.  Доложить диспетчеру о входе в район аэродрома и о расчет­ном   времени  прибытия.
2.  Получить от диспетчера информацию о местонахождении са­молета (при необходимости), разрешение на снижение и заход на посадку по выбранной системе, МПУ посадки, атмосферное давле­ние на аэродроме, эшелон перехода, скорость и направление ветра у земли и на высоте круга, условия снижения,   информацию о ме­теорологической   обстановке.
3.  Руководить подготовкой и проверять готовность экипажа и самолета к заходу на посадку по карте контрольной проверки.
4.  Просмотреть схему снижения и захода на посадку, располо­жение и превышение препятствий, указанных в схеме.
5.  Уточнить курс посадки и минимум погоды.
6.  Проверить расчет элементов полета для захода на посадку, подготовленный   штурманом.
7. Дать указания членам экипажа  по выполнению полета в данных условиях.
8.  Включить   СП-50,   ра­диовысотомер   и установить  сигнализатор опасной высо­ты на высоту пролета БПРМ.
9.  Дать указание    штур­ману настроить радиокомпа­сы на ДПРМ и БПРМ аэро­дрома посадки.
10.  Следить  за   местопоположением    самолетов     в районе аэродрома,    прослу­шивая по радио информацию службы движения   и   доклады эки­пажей других   самолетов.
Штурман корабля при подходе к аэродрому посадки обя­зан:
1.  Проверить оборудование   согласно   карте контрольной про­верки.
2.  Просмотреть схему снижения и захода на посадку, располо­жение и превышение препятствий, указанных в схеме.
3.  Уточнить   курс   посадки  и  минимум   погоды.
4.  За 10 мин до посадки произвести полный расчет элементов снижения и захода на посадку с учетом влияния ветра.
5.  Передать весь расчет в письменной форме командиру корабля.
6.  Настроить радиокомпасы на приводные радиостанции систе­мы посадки данного аэродрома (первый — на ДПРМ, второй — на БПРМ), прослушать позывные и доложить командиру корабля о настройке.
7.  Контролировать полет и вносить коррективы с расчетом точ­ного вывода самолета в исходную точку начала маневра на задан­ной высоте и в установленное диспетчером время.
8.  Сообщить командиру корабля момент начала снижения него режим.
Основные данные, необходимые для расчета элементов захода на посадку. Для захода на посадку по установленной схеме и рас­чета элементов полета необходимо знать следующие исходные данные:
1.  Расположение радиотехнических средств (рис. 22.9):
а)  удаление БПРМ от начала ВПП    (стандартное — 1 000 м);
б)  удаление ДПРМ от начала ВПП    (стандартное — 4 000 м);
в)   угол    наклона      глиссады      планирования      (стандартный УНГ=2°40';
г)   расстояние от начала ВПП до траверза ГРМ на ось ВПП (стандартное  250   м);
д)   высоту входа в глиссаду (Нв.г);
е)   высоты пролета над ДПРМ   и    БПРМ (стандартные:    над ДПРМ — 200 м, над БПРМ — 60 м);   высоты пролета указаны в схеме  захода.
 
Схемы снижения и захода на посадку
 
2.  Режим полета при заходе на посадку.   На   самолете Ан-24 при выходе на аэродром на высоте круга и заходе   на посадку по малому прямоугольному маршру­ту берутся следующие истинные воздушные скорости:
а)   от ДПРМ    до    окончания второго    разворота Vи=300 км/ч (83 м/сек);
б)   от траверза ДПРМ до тре­тьего    разворота    Vи=290    км/ч (81 м/сек);
в)   третьего    разворота    Vи = 280 км/ч (78м/сек);
г)   от третьего  до  четвертого
разворота  Vи.ср= 260 км/ч (72 м/сек);
д)   четвертого разворота Vи= = 250 км/ч (69 м/сек);
е)   от конца четвертого разво­рота до точки входа в глиссаду Vи=250 км/ч;
ж)  после входа в глиссаду на планировании с закрылками, от­клоненными на 38°, Vпр=210—200 км/ч в зависимости от полетного веса (для расчетов истинная воздушная скорость планирования бе­рется   210 км/ч = 58  м/сек).
3.  Все развороты выполняются с креном  15°.
4.   Радиусы и время разворота на 90°.
Радиус разворота самолета рассчитывается по формуле
 
Схемы снижения и захода на посадку или с помощью НЛ-10М (рис. 22.10). Время разворота на 360° и на заданный угол разворота рассчитывается по формулам:
Схемы снижения и захода на посадкуСхемы снижения и захода на посадку
или с помощью НЛ-10М   (рис. 22.11).
Для самолета Ан-24 получаются следующие данные:
R1 = R2 = 2640 м; t90 = 50сек; R3 = 2300   м; t90= 47   сек;
R4 = 1830м; t90 = 42 сек.
 
Схемы снижения и захода на посадку

Распечатать ..

 
Другие новости по теме:

  • Заход на посадку по кратчайшему пути
  • Расчет элементов захода на посадку по малому прямоугольному маршруту в штил ...
  • Заход на посадку по радиолокационной системе РСП
  • Использование РСБН-2 для захода на посадку
  • Расчет времени начала снижения при заходе на посадку с прямой для самолета ...


  • Rambler's Top100
    © 2009