www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Сокращенные обозначения и условные знаки, принятые в самолетовождении
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Прямоугольный коробчатый змей Л. Харграва
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью. Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной ...

» Наука о точном, надежном и безопасном вождении воздушных судов
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую. Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное ...

» Ошибки барометрических высотомеров
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый ...

» Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...

» Безопасная высота полета и ее расчет
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от ...

» Аэродинамический расчет автожира
Аэродинамический расчет автожира делается с целью определения его летных характеристик, как то:1)    горизонтальных скоростей - максимальных и минимальных, без снижения;2)    потолка;3)    скороподъемности;4)    скорости по траектории при крутом планировании.

» Уравнение махового движения лопасти
Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)

» Модель вертолета чешских авиамоделистов
Модель вертолета чешских авиамоделистов (рис. 53) на­поминает настоящий гели­коптер. Фюзеляж заодно с килем вырезают из пластины пено­пласта толщиной 5 мм и по периметру фигуры окантовы­вают липовыми рейками сече­нием 5X1 мм. В качестве силовой балки используют сос­новую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшип­ник винта, а с другого при­вязывают крючок из прово­ ...

» Шкалы навигационной линейки и их назначение
Навигационная линейка имеет не равномерные шкалы, а лога­рифмические. При решении задач с помощью НЛ-10М использует­ся одновременно две, а иногда и больше шкал, которые называют­ся смежными.

» Одноступенчатая модель ракеты
Одноступенчатая модель ракеты (рис. 58). Корпус клеят из двух слоев чертежной бу­маги на оправке диаметром 20 мм. Размер бумажной за­готовки 300X275 мм. Оправ­кой может служить круглый стержень из металла или дру­гого материала нужного диа­метра. Дав просохнуть бумаге, шов зачищают шлифовальной шкуркой и покрывают жидким нитролаком.

» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Предварительная штурманская подготовка к полету
Четкость работы экипажа в воздухе во многом зависит от качества штурманской подготовки к полету, которая проводится с целью облегчения самолетовождения и обеспечения безопасно­сти и точности выполнения полета по заданному маршруту, пре­дотвращения потери ориентировки и прибытия в пункт назначения в заданное время.

» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Расчет ИПС при полете по ортодромии
При полете по ортодромии для прокладки радиопеленга на карте нужно рассчитать ИПС (рис. 23.11). Когда курс выдержи­вается относительно магнитного опорного меридиана, ИПС рас­считывается по следующей формуле: ИПС = ОМК + (± Δм.о.м) + КУР ± 180° — (± α), где σ = (λо.м — λр) sin φcp.

» Сокращенные обозначения и условные знаки, принятые в самолетовождении
Точки и линииМС — место   самолета ИПМ — исходный   пункт   маршрута ППМ — поворотный   пункт   маршрута КО — контрольный   ориентир КЭ — контрольный   этап ЛЗП — линия   заданного   пути ЛФП — линия фактического пути АЛП — астрономическая   линия   положения РНТ — радионавигационная   точка ОПРС — отдельная   приводная   радиостанция РСБ ...

» Управляемость автожира и ротор
Рассмотрим, каким образом воздействия руля глубины и элеронов передаются на ротор и переводят его плоскость вращения в нужный режим или, вернее, как при подвесных лопастях (шарнирное крепление) плоскость вращения ротора следует за фюзеляжем при наклонах последнего. Возьмем для рассмотрения 4-лопастный ротор. Предположим, что автожир нужно перевести с угла i на больший угол атаки i', для чего руле ...

» Расчет истинной воздушной скорости по показанию однострелочного указателя скорости
Истинная воздушная скорость по показанию однострёлочного указателя скорости рассчитывается по формуле Vи= Vпр+(±ΔV) + (±ΔVм), где Vпр — приборная воздушная скорость; ΔV — инструмен­тальная поправка указателя воздушной скорости; ΔVМ — методическая поправка указателя воздушной скорости на из­менение плотности воздуха.

» Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) =   =   =111 км. 1ґ дуги меридиана (экватора) =   = 1,852 км = 1852 м.

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Использование НИ-50БМ для счисления пути
При радиолокационной ориентировке для счисления пути по дальности может быть использован НИ-50БМ, для чего необхо­димо: 1.  На подобранном курсе следования одним из возможных ме­тодов определить путевую скорость самолета. 2.  На  автомате курса и задатчике ветра установить МУК = ЗМПУ. 3.  На задатчике ветра установить НВ=МУК, если W>V, или НВ=МУК±180°, если  W

» Игры и соревнования. Воздушный «почтальон»
С воз­душными змеями в пионерском лагере можно проводить раз­нообразные игры и соревнова­ния — на скорость сборки и за­пуска на леере определенной длины, на высоту подъема. Особенно большой интерес вызывает запуск воздушных змеев с применением «почталь­онов». Воздушные «почталь­оны»— приспособления, кото­рые под напором ветра сколь­зят вверх по лееру. Такой лист скользит по лееру вверх ...

» Сущность истинного пеленга (ИП) и взаимозависимость пеленгов
Для контроля пути по дальности и определения места самолета запрашиваются истинные пеленги. Запрос пеленгов в телеграфном режиме осуществляется кодовым выражением ЩТЕ, в телефонном режиме — словами «Дайте истинный пеленг». Истинным пеленгом (ЩТЕ) называется угол, заключен­ный между северным направлением истинного меридиана, проходящего через радиопеленгатор, и ортодромическим направлением на ...

» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Модель ракеты «Пионер»
Модель ракеты «Пионер» (рис. 59) снаряжается двига­телем МРД 10-8-4. Технология ее изготовления немного отли­чается от предыдущей. Корпус клеят из плотной бумаги в два слоя   на   оправке  диаметром 55 мм. Четыре стабилизатора вырезают из пластины пено­пласта ПС-4-40 толщиной 5 мм, профилируют и оклеивают пис­чей бумагой. После высыха­ния их обрабатывают шлифо­вальной шкуркой и клеем ПВА крепят вс ...

» Использование РСБН-2 для захода на посадку
РСБН-2 при заходе на посадку позволяет: 1.  Производить «вписывание» самолета  в  установленную для данного аэродрома схему захода на посадку. 2.  Осуществлять контроль  полета по  установленной   схеме. 3.  Выводить самолет в зону курсового радиомаяка.

» Сущность устранения (компенсации) полукруговой девиации
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

» Самолетовождение с использованием наземных радиопеленгаторов - Задачи самолетовождения, решаемые с ...
Наземный радиопеленгатор — это специальное прием­ное радиотехническое устройство, позволяющее определять нап­равление на самолет, на котором работает передающая радиостан­ция. Данные пеленгации наземного радиопеленгатора могут быть использованы только при наличии двусторонней связи экипажа самолета с землей.

» Видоизмененная поликоническая (международная) проекция
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1 : 1 000 000. Строится она по особому закону, принятому международным соглашением.

» Расчет вертикальной скорости снижения или набора высоты
В практике самолетовождения бывают случаи, требующие сме­ны эшелона полета. При необходимости диспетчер указывает эки­пажу время начала и окончания смены эшелона или задает учас­ток, на котором должно быть произведено снижение. На основа­нии указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке.

» Сущность визуальной ориентировки
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Сокращенные обозначения и условные знаки, принятые в самолетовождении
Самолетовождение  |   Просмотров: 23168  
 
Точки и линии
МС — место   самолета
ИПМ — исходный   пункт   маршрута
ППМ — поворотный   пункт   маршрута
КО — контрольный   ориентир
КЭ — контрольный   этап
ЛЗП — линия   заданного   пути
ЛФП — линия фактического пути
АЛП — астрономическая   линия   положения
РНТ — радионавигационная   точка
ОПРС — отдельная   приводная   радиостанция
РСБН — радиотехническая   система   ближней   навигации

Направления, углы и координаты
С — север
Ю — юг
В — восток
3 — запад
Си — северное   направление   истинного   меридиана
См — северное   направление   магнитного   меридиана
Ск — северное   направление   компасного   меридиана
Си.о — северное направление истинного опорного меридиана
См.о — северное направление магнитного опорного меридиана
ЗИПУ — заданный   истинный   путевой   угол
ЗМПУ — заданный   магнитный   путевой   угол
ФИПУ — фактический   истинный   путевой   угол
ФМПУ — фактический   магнитный   путевой   угол
ОЗИПУ — ортодромический заданный  истинный путевой угол
ОЗМПУ — ортодромический  заданный  магнитный  путевой  угол
ИК — истинный   курс
МК — магнитный   курс
КК — компасный   курс
МКр — магнитный   курс   расчетный
МКср — магнитный   курс   средний
МКсл — магнитный   курс   следования
МКвых — магнитный   курс   выхода   на ЛЗП
ОИК — ортодромический   истинный   курс
ОМК — ортодромический   магнитный   курс
Δк — девиация   компаса
Δр — радиодевиация
Δм — магнитное   склонение
Δ — вариация
УС — угол   сноса
УСр — угол   сноса   расчетный
УСф — угол сноса фактический
БУ — боковое   уклонение   в   градусах
ДП — дополнительная   поправка   в   курс
ПК — поправка   в   курс
δ — направление  ветра   метеорологическое, отсчитанное от магнит­ного меридиана
НВ — направление ветра навигационное, отсчитанное от магнитного меридиана
УВ — угол   ветра
УВcр — угол   ветра   средний
ОРК — отсчет   радиокомпаса
КУР — курсовой   угол   радиостанции
КУРвых — курсовой   угол   радиостанции   выхода
КУРсл — курсовой   угол   радиостанции   следования
КУРпредв — курсовой угол радиостанции предвычисленныи
КУО — курсовой   угол   ориентира
МПО — магнитный   пеленг   ориентира
ИПР — истинный   пеленг   радиостанции
МПР — магнитный   пеленг   радиостанции
ИПС — истинный   пеленг   самолета
МПС — магнитный   пеленг   самолета
ОП(ЩДМ) — обратный   пеленг
ПП(ЩДР) — прямой   пеленг
ИП (ЩТЕ) — истинный   пеленг
А — азимут
МУК — магнитный  угол   карты
УР — угол   разворота
Увых — угол   выхода
ВУ — вертикальный   угол
β — угол   крена
σ — поправка   на   угол   схождения   меридианов
φ — широта   пункта
λ — долгота   пункта
Δλ — разность   долгот

Скорости, высоты и линейные величины
Vи — истинная   воздушная   скорость
Vпр — скорость   приборная
VпрКУС   — скорость   по   узкой стрелке   КУС
W — путевая   скорость .  
Vв — вертикальная   скорость
U — скорость   ветра
S — расстояние   между   двумя   точками
S тр — расстояние   траверза
S наб — расстояние   набора   высоты
S сн— расстояние   снижения
S р.в — расстояние   рубежа   возврата
ЛБУ — линейное   боковое   уклонение
ЛУР — линейное   упреждение   разворота
R — радиус   разворота
ГД — горизонтальная   дальность
НД — наклонная   дальность
Ни — истинная   высота
Нпр — приборная   высота
Нб — барометрическая   высота
Но — относительная   высота
Набс — абсолютная    высота
Н760 — условно   барометрическая   высота
Нподх — высота   подхода
Нотх — высота   отхода
Нсн — высота   снижения
Нэш — высота   эшелона
Н760без — безопасная высота по давлению 760 мм рт. ст.
Нприв. без — безопасная высота по приведенному минимальному давлению
Haэр, без — безопасная   высота   по   давлению   аэродрома
МБВ — минимальная   безопасная   высота
ВПР — высота   принятия   решения
Нр — абсолютная   высота   точки   рельефа
На эр — высота   аэродрома   относительно   уровня   моря
ΔНр — превышение  наивысшей  точки  относительно   аэродрома
ΔН — инструментальная   поправка   высотомера
ΔНt — методическая  температурная  поправка  высотомера
ΔНа — аэродинамическая   поправка   высотомера
ΔНб — поправка к высотомеру за барический рельеф
ΔV — инструментальная   поправка   указателя   воздушной  скорости
ΔVа — аэродинамическая поправка указателя воздушной скорости
ΔVсж — поправка  к  указателю скорости  на сжимаемость воздуха
ΔV t — методическая  температурная  поправка  указателя скорости

Время и метеорологические элементы
Т — момент   времени
t — отрезок   времени
Р0— атмосферное   давление   у   земли
Раэр — атмосферное   давление   на   аэродроме
Ри — атмосферное   давление   на   высоте
Рприв. мин — минимальное  атмосферное давление на данном участке трассы,
приведенное   к   уровню   моря
t 0 — температура   у   земли
t н — температура   на   высоте
t пр — показание   термометра   на   высоте   полета
t ср — температура   средняя
t град — вертикальный   температурный   градиент

Условные обозначения элементов схем захода на посадку

Точки
ТНС — точка    начала   снижения
ТКМ — точка   конца маневра при выходе на предпосадочную прямую
ТНР — точка    начала   разворота
ТВР — точка    выхода   из   разворота
ТГП — точка    начала   горизонтального   полета
ТВГ — точка    входа   в   глиссаду
БПРМ — место   установки ближней приводной  радиостанции  с маркером
ДПРМ — место   установки дальней приводной радиостанции с маркером

Расстояния
Sг.п— расстояние от точки начала горизонтального полета на высоте входа  в глиссаду до точки входа  в глиссаду
S1 — расстояние от ДПРМ до начала разворота на 180°
S2 — расстояние от конца первого до начала второго разворота
S3 — расстояние от траверза ДПРМ до начала третьего разворота
S4 — расстояние от конца третьего до начала четвертого разворота
Sт.в.г.— расстояние от точки входа в глиссаду до траверза ГРМ на ось ВПП
Sд — расстояние   от   ДПРМ   до   начала   ВПП
Sб — расстояние   от   БПРМ   до   начала   ВПП
Sгрм — расстояние от начала ВПП до траверза ГРМ на ось ВПП
L — ширина   прямоугольного   маршрута

Высота полета
Нисх — исходная высота начала маневра для захода на посадку
Нв.г — высота   входа   в   глиссаду
Нг.п — высота   горизонтального   полета
Нн.р — высота   начала   разворота
Нв.р — высота   выхода   из   разворота

Время полета
t1 — время полета от ДПРМ до начала разворота   на 180°   или   до
начала первого разворота на 90°
t2 — время полета от конца первого до начала второго разворота
t3 — время полета от траверза ДПРМ до начала третьего разворота
tгп — время   полета   от   ТГП   до   ТВГ
tсн — время   снижения

Углы и направления
УНГ — угол   наклона   глиссады
РУ — расчетный   угол   отворота   от   оси   ВПП
УВпос — угол   ветра   посадочный
КУРтр — курсовой угол радиостанции,  расположенной на траверзе
КУР3 — курсовой угол радиостанции в точке начала третьего разворота
КУР4 — курсовой угол радиостанции в точке начала четвертого разворота
КУРпос — курсовой угол радиостанции    при    полете    на    предпосадочной
прямой
ПМПУ — посадочный магнитный путевой угол
ОПМПУ — обратный посадочный магнитный путевой угол
MK1 — магнитный курс для полета от ДПРМ до начала   разворота на 180° или до начала первого разворота на 90°.
МК2 — магнитный курс для полета к точке второго разворота
МК3 — магнитный курс для полета к точке третьего разворота
МК4 — магнитный курс для полета к точке начала четвертого разворота
МКпос — магнитный   курс   посадки
Условные знаки, применяемые на полетных картах и схемах

Условные знаки, применяемые на полетных картах и схемах  — магнитное   склонение
Условные знаки, применяемые на полетных картах и схемах  — отметка   высоты   местности   над   уровнем   моря
Условные знаки, применяемые на полетных картах и схемах  — отметка   места самолета,  определенного  визуально с указанием времени   определения
Условные знаки, применяемые на полетных картах и схемах  — отметка места самолета, полученного прокладкой линий поло­жения на карте, а также прокладкой пути, в том числе и при помощи, автоматических средств
Условные знаки, применяемые на полетных картах и схемах  — отметка   места  самолета,  полученного с земли по запросу экапажа
Условные знаки, применяемые на полетных картах и схемах  — линия пеленга от ориентира на самолет с указанием времени
Условные знаки, применяемые на полетных картах и схемах  — линия   пеленга   от   РНТ   на   самолет
Условные знаки, применяемые на полетных картах и схемах  — астрономическая   линия   положения
Условные знаки, применяемые на полетных картах и схемах  — линия   пути
Условные знаки, применяемые на полетных картах и схемах  — время пролета ориентира,  числитель—фактическое,   знаме­натель — расчетное
Условные знаки, применяемые на полетных картах и схемах  — запись   времени   (часы,   минуты,   секунды)
Условные знаки, применяемые на полетных картах и схемах  — стационарная и подвижная приводные радиостанции
Условные знаки, применяемые на полетных картах и схемах  — стационарный и подвижный коротковолновые радиопеленга­торы
Условные знаки, применяемые на полетных картах и схемах  — стационарный  и  подвижный   ультракоротковолновые   радио­пеленгаторы
Условные знаки, применяемые на полетных картах и схемах  — наземный радиолокатор
Условные знаки, применяемые на полетных картах и схемах  — радиотехническая система ближней навигации и посадки са­молетов (РСБН)

Распечатать ..

 
Другие новости по теме:

  • Расчет элементов захода на посадку по малому прямоугольному маршруту в штил ...
  • Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэро ...
  • Основные радионавигационные элементы
  • Способы определения ортодромических путевых углов
  • Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы с ...


  • Rambler's Top100
    © 2009