www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Основы авиационной картографии » Цилиндрические проекции
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и ука­затели: 1.  Щиток управления системой. 2.  Указатель угла сноса и путевой скорости. 3.  Задатчик угла карты, 4.  Счетчик координат. 5.  Переключатель «ДИСС—АНУ». 6.  Переключатель «Счетчик» («Вкл.—Выкл.»). 7.  Задатчик ветра.

» Ручка управления с фик­сатором
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее ос­воить этот прием, применяют ручку управления, которая фиксируется на предплечье не­большим  хомутом   (рис.  67).

» Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...

» Стремление к полету
Стремление к полету всегда влекло человека. Еще в древ­ности люди мечтали летать по­добно птицам. А они ведь не всегда при полете машут крыль­ями: кто из нас не наблюдал и другой вид их полета — пла­нирование. Раскинув крылья, птицы могут без затрат мус­кульной энергии подниматься вверх, опускаться вниз. Поняв, что для подражания машущему полету птиц челове­ку недостаточно его мускульной сил ...

» Безопасная высота полета и ее расчет
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от ...

» Пеленг и курсовой угол ориентира
Магнитным пеленгом ориентира МПО называется угол, заключенный между северным направлением магнитного ме­ридиана и направлением на ориентир: трубу, мачту, радиостанцию и т. д. (рис. 3.8). МПО отсчитывается от северного направления магнитного меридиана до направления на ориентир по ходу часо­вой стрелки от 0 до 360°.

» Классификация ориентиров и их главные отличительные признаки
Визуальная ориентировка ведется по земным ориентирам. Ори­ентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем лан­дшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и то­чечные.

» Правила ведения визуальной ориентировки
При ведении визуальной ориентировки необходимо соблюдать следующие правила: 1 Перед сличением карты с местностью ориентировать ее по странам света, чтобы расположение ориентиров на карте было по­добным расположению ориентиров на местности. 2.  Сочетать визуальную ориентировку с прокладкой пути, что­бы создать благоприятные условия для сличения карты с местно­стью в районе предполагаемого местонахо ...

» Назначение и принцип устройства навигационной линейки НЛ-10М
Навигационная линейка НЛ-10М является счетным инструмен­том пилота и штурмана и предназначена для выполнения необхо­димых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...

» Предварительная штурманская подготовка к полету
Четкость работы экипажа в воздухе во многом зависит от качества штурманской подготовки к полету, которая проводится с целью облегчения самолетовождения и обеспечения безопасно­сти и точности выполнения полета по заданному маршруту, пре­дотвращения потери ориентировки и прибытия в пункт назначения в заданное время.

» Устранение установочной ошибки рамки радиокомпаса
Блок рамки устанавливается на самолет так, чтобы направле­ние курсовой черты, отмеченное рисками на основании рамки, сов­пало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет рав­на нулю. Установочной ошибкой рамки радиокомпаса на­зывается угол, на который отклоняется стрелка указателя от нуле­вого деления шкалы при КУР = 0°. Э ...

» Сущность устранения (компенсации) полукруговой девиации
Очевидно, что для устранения полукруговой девиации необходи­мо при помощи постоянных магнитов создать силу, равную по ве­личине и противоположную по направлению силе, вызывающей де­виацию.   Полукруговая девиация вызывается силами СλН и ВλН и устраняется на четырех курсах: 0, 90, 180, 270° при помощи посто­янных магнитов девиационного прибора.

» Масштаб карты
Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местно­сти. Он показывает степень уменьшения линий на карте относи­тельно соответствующих им линий на местности. Масштаб бывает численный и линейный.

» Основные точки, линии и круги на земном шаре
Земля непрерывно вращается с запада на восток. Диаметр, во­круг которого происходит это вращение, называется осью враще­ния Земли (рис. 1.2). Эта ось пересекается с поверхностью Земли в двух точках, ко­торые называются географическими полюсами: один Се­верным (С), а другой Южным» (Ю). Северным называется тот по­люс, в котором, если смотреть на него сверху, вращение Земли на­правлено против хода ча ...

» Вывод самолета на запасный аэродром с помощью наземного радиолокатора
Вывод самолета на запасный аэродром с помощью наземного радиолокатора применяется в следующих случаях: 1)   при потере ориентировки экипажем самолета; 2)   при   отказе   радиокомпаса   и  невозможности   использовать другие средства самолетовождения; 3)   при полете в пункт, в котором не имеется радионавигацион­ной точки.

» Требования безопасности самолетовождения
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

» Модель самолета из пено­пласта
Модель самолета из пено­пласта (рис. 28) разработана авиамоделистами СЮТ г. Элек­тростали. За основу взят чер­теж модели самолета «Вилга-2» и полумакет чехословацких мо­делистов, изготовленный из бальзы. Строительный материал для этого микросамоле­та — пенопласт (упаковочный или ПС-4-40).

» Модель воздушного боя
Модели воздушного боя, или как их часто называют «бойцовки», несомненно, держат первенство среди всех кор­довых летательных аппара­тов. Обилие всевозможных схем и конструкторских ре­шений — наглядное подтверж­дение сказанному. Знакомство с этим классом авиационных моделей начнем с несложной «бойцовки», разработанной в пионерском лагере «Родник», где много лет автор был руководителем   авиакр ...

» Контроль и исправление пути при полете от радиолокатора и на радиолокатор
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осу­ществляется в следующем порядке: 1.  Запросить у диспетчера место самолета. 2.  Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм);    БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между мериди ...

» Скорость полета - Воздушная и путевая скорости
Знание скорости полета необходимо как для пилотирования самолета, так и для целей самолетовождения. Полет самолета на скорости ниже минимальной приводит к потере устойчивости и уп­равляемости. Увеличение скорости сверх допустимой связано с опасностью разрушения самолета. Для целей самолетовождения знание скорости полета необходимо для выполнения различных навигационных расчетов.

» Выход на линию заданного пути
Выход на ЛЗП — важный этап работы экипажа. Он заключа­ется в определении такого курса следования, при выдерживании которого фактический путевой угол был бы равен заданному пу­тевому углу или отличался от него не более чем на 2°. В зависимости от навигационной обстановки курс следования может определяться одним из следующих способов: 1)   по прогностическому или шаропилотному ветру; 2)   по в ...

» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ...
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Модель конструкции Г. Без­рука
Модель конструкции Г. Без­рука (рис. 37). С этой моделью ее создатель успешно высту­пал на соревнованиях по воз­душному бою во Всероссий­ском пионерском лагере «Ор­ленок». Простота в изготовле­нии, неплохая скорость и ма­невренность — вот главные ка­чества модели.

» Навигационные задачи на маневрирование - Определение времени последнего срока вылета
Дневные срочные вылеты с аэродромов, не оборудованных для ночных полетов, разрешается начинать за 30 мин до восхода Солн­ца и заканчивать полет за 30 мин до наступления темноты в рав­нинной и холмистой местности и не позднее захода Солнца в гор­ной местности. В районах севернее широты 60° полеты разрешается заканчивать за 30 мин до наступления темноты.

» Полет на радиостанцию
Полет на радиостанцию может быть выполнен пассивным или активным способом. В свою очередь активный полет на радиостанцию может быть выполнен одним из следующих способов; 1)   с выходом на ЛЗП; 2)   с выходом в КПМ (ППМ); 3)   с любого направления подбором курса следования. Пеленги, определяемые при полете на  радиостанцию,  можно использовать для контроля пути по направлению.

» Авторотация несущего винта-ротора
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс ...

» Определение значений тригонометрических функций углов
Значения синуса и косинуса данного угла α на НЛ-10М опре­деляются по шкалам 3 и 5, значения тангенса и котангенса — по шкалам 4 и 5. Чтобы определить синус и косинус данного угла, необходимо 90° шкалы 3 или треугольный индекс шкалы 4 установить на де­ление 100 шкалы 5 и с помощью риски визирки отсчитать против значения данного угла α шкалы 3 по шкале 5 искомое значение синуса (в ...

» Запуск змеев
Как было ска­зано ранее, воздушные змеи запускают на тонком, прочном шнуре-леере. Особенно внима­тельно надо отнестись к выбо­ру места запуска. Необходимым условием  полета змея является ветер. Змеи различных размеров летают приопределенной скорости  ветра. Большой и тяжелый змей нав­ряд ли удастся запустить при слабом ветре, когда уверенно может   держаться   в   воздухе змей, изображенный на рис ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Цилиндрические проекции
Самолетовождение » Основы авиационной картографии  |   Просмотров: 9000  
 
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть:
1)   нормальные — ось цилиндра совпадает с осью вращения Земли;
2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли;
3)   косые — ось цилинд­ра     составляет   некоторый угол с осью вращения Земли.
Карты в цилиндрической проекции издаются в не­скольких разновидностях.
Нормальная равноугольная цилиндрическая проек­ция приобрела всеобщее распространение    для составления мор­ских карт. Эту проекцию называют еще проекцией Меркатора по имени голландского картографа, который ее предложил.
Построение этой проекции производится проектированием гло­буса из его центра на боковую поверхность цилиндра, касательно­го к экватору (рис. 2.2). После проектирования цилиндр разрезает­ся по образующей и разворачивается на плоскость. При проектиро­вании на поверхность цилиндра параллели растягиваются до дли­ны экватора. Соответственно на такую же величину растягиваются и меридианы. Поэтому проекция сохраняет подобие фигур и явля­ется равноугольной.
 
проектированием гло­буса из его центра на боковую поверхность цилиндра
 
Карты в равноугольной цилиндрической проекции имеют сле­дующие основные свойства:                                         
1)   меридианы и параллели изображаются взаимно перпенди­кулярными   линиями;
2)   расстояния между меридианами одинаковые, а между   па­раллелями увеличиваются с увеличением широты;
3)   сохраняется равенство углов и подобие фигур;
4)   масштаб переменный и с увеличением широты    становится крупнее, поэтому расстояние между двумя точками определяется по специальной шкале, нанесенной на боковых обрезах карты. Эта шкала учитывает переменный масштаб по широте;
5)   искажение масштаба практически не ощутимо только в по­лосе   ±5° от   экватора;
6)   локсодромия изображается прямой    линией,   что   является основным преимуществом этой проекции, значительно   облегчаю­щим   решение   навигационных   задач;
7)   ортодромия изображается кривой линией, выпуклой к полю­су (т. е. в сторону более крупного масштаба).
В нормальной равноугольной цилиндрической проекции изда­ются навигационные морские карты.
Равноугольная поперечно-цилиндрическая проекция. Эту про­екцию предложил немецкий математик Гаусс, поэтому ее обычно называют проекцией Гаусса. Равноугольная поперечноцилиндрическая проекция получается путем проектирования земной поверхности на боковую поверхность цилиндра, расположенного перпен­дикулярно оси вращения Земли.
Для построения карт в этой проекции поверхность Земли де­лят меридианами на 60 зон. Каждая такая зона по долготе зани­мает 6°. Счет зон ведется на восток от Гринвичского меридиана, который является западной границей первой зоны (рис. 2.3). По широте зоны простираются от Северного полюса до Южного. Каж­дая зона изображается на своем цилиндре, касающемся поверх­ности глобуса по среднему меридиану данной зоны. Указанные особенности построения позволяют уменьшить искажения.
Карты в равноугольной поперечно-цилиндрической проекции имеют такие свойства:
1)   незначительное искажение масштаба; на осевых меридианах искажения длин отсутствуют, а по краям зон на широте 0° не пре­вышают 0,14%, т. е. 140 м на 100 км измеряемой длины и практи­ческого   значения   не   имеют;
2)   сохраняется равенство углов и подобие    фигур; на крайних меридианах зон фигуры изображаются в более крупном масштабе, чем  на   среднем   меридиане;
3)   осевой меридиан зоны    и экватор изображаются    прямыми взаимно  перпендикулярными  линиями;   остальные   меридианы — кривыми линиями, сходящимися от экватора к полюсам, а парал­лели— дугами, выпуклыми к экватору; кривизна    меридианов    в пределах   одного   листа   карты  незаметна;
4)   в пределах одной зоны листы карт склеиваются без разры­вов;
5)   локсодромия имеет вид кривой, выпуклой к экватору;
6)   ортодромия на расстоянии до 1000 км изображается прямой линией;
7)   на картах масштаба  1:200000 и крупнее нанесена    километровая
Поперечно-цилиндрическая проекция сетка прямоугольных координат Гаусса

Рис. 2.3. Поперечно-цилиндрическая проекция сетка   прямоугольных  координат Гаусса.
 
 
проектировании земной поверхности на бо­ковую поверхность цилиндра
 
В равноугольной поперечно-цилиндри­ческой проекции составлены карты масш­табов 1 : 500 000, 1 : 200 000, 1 : 100 000, 1:50000, 1:25000 и 1:10000, т. е. все карты крупного масштаба.
Косая равноугольная цилиндрическая проекция. Эта проекция получается при проектировании земной поверхности на бо­ковую поверхность цилиндра, расположен­ного под углом к оси вращения Земли (рис. 2.4). Цилиндр располагают так, что­бы он касался глобуса по оси маршрута. Этим достигается уменьшение искажений на составляемой карте. На картах в этой проекции в полосе 500—600 км от осевой линии маршрута искажения масштаба не превышают 0,5%. Ортодромия в полосе карты изображается пря­мой   линией.
В косой равноугольной цилиндрической проекции издаются маршрутно-полетные карты масштабов 1 : 1 000 000 и 1 : 2 000 000, а также бортовая карта масштаба 1 : 4 000 000.

Распечатать ..

 
Другие новости по теме:

  • Конические проекции
  • Видоизмененная поликоническая (международная) проекция
  • Поликонические проекции
  • Азимутальные проекции
  • Сущность картографических проекций и их классификация


  • Rambler's Top100
    © 2009