www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Штурманская подготовка и правила выполнения полет » Безопасная высота полета и ее расчет
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Расчет общего запаса топлива с помощью графика
Для каждого полета рассчитывают количество топлива, необ­ходимое для заправки самолета. При этом исходят из того, что полет по трассе включает в себя следующие этапы: взлет и маневрирование в районе аэродрома взлета для выхо­да на линию заданного пути; набор заданного  эшелона; горизонтальный полет на заданном эшелоне по маршруту; снижение до высоты начала построения маневра захода на по­садку; ма ...

» Защита для жиклера
Устанавливая ми­кродвигатели с передним рас­пределением на модели воз­душного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у мото­ров, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жик­лер. Выход из этого положения весьма прост: достаточно вы­пилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный пре­дох ...

» Определение момента пролета радиостанции или ее траверза
Полет на радиостанцию заканчивается определением момента ее пролета. Как правило, этот момент необходимо ожидать. О приближении самолета к радиостанции можно су­дить по следующим призна­кам: а)   истекает       расчетное время прибытия на РНТ; б)   увеличивается   чувст­вительность    радиокомпаса, что   сопровождается   откло­нением стрелки   индикатора настройки вправо.

» Ромбический коробчатый змей
Ромбический коробчатый змей (рис. 6) выполнен по схеме Потера. От предыдущего он отличается большими размера­ми (длина 1,6 м, ширина 2 м) и более сложной конструкцией, Для увеличения подъемной си­лы змей-великан (назовем его так) снабжен открылками, что придает сходство с первыми са­молетами. Каркас змея делают из сос­новых реек сечением 15Х 15 мм. Подойдут также бамбуковые палки, дюралюминиевые т ...

» Расчет ИПС при полете по ортодромии
При полете по ортодромии для прокладки радиопеленга на карте нужно рассчитать ИПС (рис. 23.11). Когда курс выдержи­вается относительно магнитного опорного меридиана, ИПС рас­считывается по следующей формуле: ИПС = ОМК + (± Δм.о.м) + КУР ± 180° — (± α), где σ = (λо.м — λр) sin φcp.

» Предотвращение случаев попаданий самолетов в зоны с особым режимом полетов
Над территорией СССР установлены определенные режимы полетов, обеспечивающие безопасность полетов по трассам, в воздушных зонах крупных центров страны и в районах аэродро­мов, а также предотвращающие случаи нарушения экипажами самолетов государственной границы Союза ССР и позволяющие осуществлять контроль за полетами самолетов.

» Контроль и исправление пути при полете от радиолокатора и на радиолокатор
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осу­ществляется в следующем порядке: 1.  Запросить у диспетчера место самолета. 2.  Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм);    БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между мериди ...

» Змей-дельтаплан
Змей-дельтаплан (рис. 2), разработанный французскими моделистами,конструктивно со­стоит из крыла и киля, обтяжка которых выкроена из тонкой синтетической ткани. Приступая к изготовлению этого змея, ткань размером 1800X900 мм складывают по­полам и закрепляют булавками. Выше диагонали на 40 мм (при­пуск на швы) проводят парал­лельную линию и режут по ней материал. Разворачивают ее и в получившемся б ...

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Контроль пути по направлению и дальности
Контроль пути по направлению и дальности может осуществляться с помощью боковых радиолокаторов путем нанесения на карту места самолета по переданным на борт самолета азимуту и дальности. Такой контроль можно осуществить и без прокладки А и Д на карте, что сокращает время на получение необходимых данных контроля пути.

» Использование РПСН-2 в режиме «Препятствие»
Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пя­тен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индика­ции, ко ...

» Расчет истинной воздушной скорости по показанию широкой стрелки комбинированного указателя скорости
На скоростных самолетах для измерения воздушной скорости устанавливается комбинированный указатель скорости КУС-1200. Его широкая стрелка показывает приборную воздушную скорость, а узкая — приближенное значение истинной воздушной скорости. Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле Vи = Vпр + ( ± Δ V) + ( ±   Δ Va) +(- Δ Vсж) + ( ± Δ ...

» Классификация ориентиров и их главные отличительные признаки
Визуальная ориентировка ведется по земным ориентирам. Ори­ентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем лан­дшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и то­чечные.

» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ...
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

» Особенности самолетовождения при полетах в особых условиях - Особенности самолетовождения над горн ...
К полетам в особых условиях относятся полеты над горной местностью, в зоне грозовой деятельности, над полярными райо­нами Северного и Южного полушарий, пустынной и малоориентирной местностями, большими водными пространствами, на ма­лых высотах и ночью. Самолетовождение в особых условиях навигационной обста­новки выполняется по общим правилам с учетом некоторых осо­бенностей, знание которых являетс ...

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Порядок работы штурмана при выполнении полета по воздушной трассе
Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводит­ся контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных прове­рок.

» Учебная пилотажная мо­дель «Тренер»
Учебная пилотажная мо­дель «Тренер» (рис. 34) помо­жет освоить фигуры пилотаж­ного комплекса — прямые и обратные петли, поворот на горке и перевернутый полет (полет «на спине»). Конструктор данной модели В. Кибец при ее конструировании зало­жил такие основные требо­вания — наименьшая возмож­ная масса, относительная про­стота изготовления и хорошая технологичность. Изготовление модели н ...

» Схематическая модель пла­нера разработана ал­ма-атинскими авиамоделиста­ми
Схематическая модель пла­нера (рис. 23) разработана ал­ма-атинскими авиамоделиста­ми. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный па­ритель фитильным приспособ­лением для принудительной по­садки. Постройку такой «схематич­ки» начинают с крыла. Прежде всего заготовки кромок изго­тавливают с помощью спе­циально изготовленного при­способлени ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Самолетовождение с использованием наземных радиопеленгаторов - Задачи самолетовождения, решаемые с ...
Наземный радиопеленгатор — это специальное прием­ное радиотехническое устройство, позволяющее определять нап­равление на самолет, на котором работает передающая радиостан­ция. Данные пеленгации наземного радиопеленгатора могут быть использованы только при наличии двусторонней связи экипажа самолета с землей.

» Двухмоторный электролет
Двухмоторный электролет был создан в результате даль­нейшего  развития  моделей с электродвигателем. Демон­страционные полеты такого аппарата вызывают большой интерес в любой аудитории, будь то школа или пионерский лагерь; они хорошо смотрятся на слетах, фестивалях и празд­никах. Двухмоторная схема модели позволяет повысить ее энерговооруженность, добить­ся надежности полета на от­крытом воздухе.

» Расчет элементов захода на посадку по малому прямоугольному маршруту в штиль
Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий междуна­родной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самоле­тов, имеющих приборную ско­рость пол ...

» Заполнение штурманского бортового журнала в полете и записи на карте
В процессе выполнения полета штурман выполняет различные навигационные расчеты и измерения. Так как запомнить результа­ты всех расчетов и измерений невозможно, штурман записывает их в бортовом журнале, а некоторые отмечает на карте. В бортовом журнале и на карте рекомендуется четко и быстро записывать только те данные, которые нужны для определения на­вигационных элементов полета, контроля и испра ...

» Масштаб карты
Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местно­сти. Он показывает степень уменьшения линий на карте относи­тельно соответствующих им линий на местности. Масштаб бывает численный и линейный.

» Ошибки указателя воздушной скорости
Указатель воздушной скорости имеет инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки ΔV возникают по тем же причинам, что и аналогичные ошибки высотомера. Они определяются путем сличения показаний указателя скорости с показания­ми точно выверенного прибора, заносятся в график или таблицу и учитываются при расчете скорости.

» Силы а моменты на роторе
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда ...

» Инструмент и материалы для авиакружка
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр ...

» Модель планера
Модель планера — конструк­ция,    которая    воспроизводит лишь схему основных частей планера, не копирующая его внешне. Знакомство с моделями пла­неров лучше начать с самой простой модели, изготовленной из бумаги. В практике авиамоделизма ее называют учеб­ной (рис. 16).

» Пилотажная модель «Акро­бат»
Пилотажная модель «Акро­бат» (рис. 35), разработанная московскими авиамоделиста­ми, обладает хорошей управ^ ляемостью и высокой устой­чивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери ско­рости на отдельных участках фигур высшего пилотажа. Фюзеляж   —   непривычной для современных «пилотажек» конструкции — с   чрезвычайно корот ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Безопасная высота полета и ее расчет
Самолетовождение » Штурманская подготовка и правила выполнения полет  |   Просмотров: 44489  
 
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру.
Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от столкно­вений с земной (водной) поверхностью или препятствиями.
Минимально допустимые истинные безопасные высоты уста­новлены НПП ГА для полетов в зоне взлета и посадки, по воз­душным трассам и маршрутам вне трасс, а также в районе под­хода. Минимальные безопасные высоты определены как для ви­зуальных полетов, так и для полетов по приборам в зависимости от рельефа местности, скорости полета, допустимых отклонений в пилотировании, а также возможных вертикальных отклонений от заданной высоты полета в турбулентной атмосфере.
Для полетов по приборам и для визуальных полетов установ­лены определенные правила расчета и выдерживания безопас­ных высот полета.
Расчет безопасной высоты полета по давлению 760 мм. рт. ст. Безопасная высота по давлению 760 мм рт. ст. рассчитывается при полете на эшелоне, когда шкалы давлений барометрических высотомеров установлены на отсчет, равный 760 мм рт. ст. Такой расчет производится по минимальной истинной безопасной высоте, абсолютной высоте наивысшей точки рельефа с учетом искус­ственных препятствий на данном участке трассы, минимальному атмосферному давлению и температуре воздуха (рис. 8.1).
При расчете безопасной высоты учитываются как постоянные элементы, так и переменные (атмосферное давление и темпера­тура воздуха). Поэтому он должен выполняться перед каждым по­летом и обеспечивать пролет самолета на установленной мини­мальной истинной безопасной высоте относительно самого высо­кого препятствия- на данном участке трассы над точкой с мини­мальным давлением.
Безопасная барометрическая высота по давлению 760 мм рт. ст. рассчитывается по формуле
Н760 без = Н без.ист + Нp — Δ Нt+ (760 — Н прив.мин ) · 11,
где Н без. ист — установленное  значение минимальной истинной безопасной высоты для полетов по правилам полетов по приборам (по ППП); Н р — абсолютная высота наивысшей точки рельефа местности с учетом высоты искусственных пре­пятствий на данном участке трассы в пределах установленной ширины полосы. При полетах по воздушным трассам и марш­рутам вне трасс по ППП рельеф и препятствия учитываются в полосе по 25 км в обе стороны от оси трассы (маршрута);

Расчет безопасной высоты полета по давлению 760 мм рт. ст.


Рис. 8.1. Расчет безопасной высоты полета по давлению 760 мм рт. ст.

Рприв.мин—минимальное атмосферное давление по маршру­ту (участку) полета, приведенное к уровню моря; ΔHt— мето­дическая температурная поправка высотомера, которая учи­тывается по навигационной линейке; 11 — барометрическая ступень в метрах у земли, соответствующая изменению давле­ния на 1 мм рт. ст.
Для полетов по трассам и маршрутам вне трасс по правилам полетов по приборам установлены следующие минимальные ис­тинные безопасные высоты (вне зависимости от скорости само­лета):
1.  Над равнинной, холмистой    местностями и водными прост­ранствами Hбез. ист = 400 м.
2.  Над горной местностью с высотой    гор до 2000 м Hбез. ист  = 600 м.
3.  Над   горной   местностью    с   высотой   гор   более   2000 м Hбез. ист =1000 м
Характер местности принято определять по относительному превышению рельефа, которое представляет собой разность меж­ду наибольшей и наименьшей высотами рельефа, расположен­ными в радиусе 25 км.
Равнинной называется местность с относительными превы­шениями рельефа не более 100 м, холмистой — не более 500 м и горной — более 500 м. К горной относится также мест­ность с различными относительными превышениями рельефа, расположенная на высотах 2000 м над уровнем моря и более.
Рассмотрим порядок расчета безопасной высоты по давлению 760 мм рт. ст. на примере.
Пример.   Нр1 = 890 м;  Нр2 = 200м;   t0= —10°; Pприв.мин = 750 мм. рт. ст. Определить H760без.
Решение. 1. Определяем характер местности и допустимую минималь­ную истинную безопасную высоту полета. В данном примере местность горная;
Hбез. ист = 600 м.
2.  Определяем абсолютную безопасную высоту полета:
Hабс.без = Hбез.ист + HР = 600 + 890 = 1490 м.
3.   Определяем  температуру воздуха  на  полученной  высоте  и   исправляем высоту на методическую температурную поправку.
Температуру воздуха на высоте полета получают по фактическим данным вертикального зондирования атмосферы или определяют по температуре на земле и вертикальному температурному градиенту.
tH = t0 — 6,5°·H км = — 10° — 6,5·1,5 = —20°.
Исправление высоты на методическую температурную поправку производят на НЛ-10М. Для этого ромбический индекс подводят по шкале 7 на отсчет, равный алгебраической сумме температур на земле и на полученной абсолют­ной высоте. Затем против абсолютной безопасной высоты, взятой по шкале 8, читают по шкале 9 исправленную высоту. Получаем: t0 + tH = —30°; Ниспр = 1630 м.
4. Находим барометрическую поправку к высоте и определяем безопасную барометрическую высоту относительно изобарической поверхности с давлением 760 мм рт. ст.
H760 без= Hиспр + (760 —Рприв.мин) ·11 = 1630 + (760 — 750)·11 = 1630 + 110 = 1740 м.

Определение высоты нижнего безопасного эшелона. Для пред­отвращения столкновений самолетов в воздухе введено эшелони­рование полетов по высоте. Высоты эшелонов установлены в за­висимости от направления полета. Для воздушных трасс СССР принята полукруговая система вертикального эшелонирования по­летов.
Для направления полета с ИПУ в пределах от 0 до 179° вклю­чительно применяются следующие эшелоны полетов: 900, 1500, 2100, 2700, 3300, 3900,4500, 5100, 5700, 6600, 7800, 9000, 11 000 м, а для направления полета с ИПУ в пределах от 180 до 359° вклю­чительно — 600, 1200, 1800, 2400, 3000, 3600, 4200, 4800, 5400, 6000, 7200, 8400, 10000, 12 000 м.
Высоты (эшелоны) полета при радиообмене передаются в аб­солютных величинах.
Попутные эшелоны на высотах от 600 до 6000 м установле­ны через 600 м, а встречные — через 300 м, от 6000 до 9000 м соответственно через 1200 и 600 м, а на высотах выше 9000 м попутные эшелоны установлены через 2000 м, а встречные через 1000 м.
На отдельных участках воздушных трасс, направление которых выходит за пределы полукруга, эшелонирование самолетов мо­жет осуществляться с учетом общего направления данной трассы.
На каждом участке трассы в зависимости от рельефа местно­сти, атмосферного давления и температуры воздуха используются не все установленные эшелоны полета. С целью обеспечения бе­зопасности полетов используются лишь те эшелоны, которые рас­положены не ниже безопасной высоты полета.
Нижним безопасным эшелоном называется эше­лон, равный безопасной высоте или ближайший больший эшелон, взятый для данного направления полета. Таким образом, выбо­ру нижнего безопасного эшелона должен предшествовать расчет безопасной высоты полета.
Рассмотрим порядок определения высоты нижнего безопасного эшелона на примере.

Пример. ИПУ=145°; местность горная; H р=950 м; t0= + 15°; Рприв. мин =740 мм рт. ст. Определить H 760 без и H 760 нижн.
Решение: 1. Рассчитываем безопасную барометрическую высоту полета: H абс.без = H без.ист + H р = 600 + 950 = 1550 м;
tH = + 5°; t0 + tH = + 20°; H исп = 1550 м; H760 без = 1770 м.
2. По полученной безопасной высоте и ИПУ определяем нижний безопас­ный эшелон полета: H 760 нижн = 2100 м.
Высота заданного эшелона выдерживается по высотомеру, барометрическая шкала которого установлена на отсчет 760 мм рт. ст. с учетом его инструментальной и аэродинамической поправок, указанных в приложенной к нему таблице.
Высота нижнего безопасного эшелона пересчитывается при изменении приведенного минимального атмосферного давления на 4 мм рт. ст. и более.
При наборе высоты заданного эшелона барометрические шка­лы высотомеров переводятся с отсчета, соответствующего атмос­ферному давлению на уровне ВПП, на отсчет 760 мм рт. ст. при пересечении высоты перехода, которая указывается на схемах набора высоты и выхода из района аэродрома.
Высотой перехода называется высота, установленная в районе аэродрома, на которой и ниже которой полет воздушного судна контролируется по атмосферному давлению на аэродроме.
При снижении для захода на посадку барометрические шкалы высотомеров переводятся с давления 760 мм рт. ст. на давление, соответствующее уровню ВПП, на эшелоне перехода.
Эшелоном перехода называется нижний эшелон, при пересечении которого барометрические высотомеры устанавлива­ются на атмосферное давление уровня ВПП аэродрома посадки. Эшелон перехода на 300 м и более выше высоты перехода (высо­ты полета по кругу).
Расчет безопасной высоты для визуального полета ниже нижнего эшелона. При визуальном полете ниже нижнего эшело­на шкалы давлений барометрических высотомеров устанавлива­ются на минимальное атмосферное давление на данном участке маршрута, приведенное к уровню моря. Такая установка шкал давлений высотомеров осуществляется при выходе самолета из зоны взлета и посадки (из зоны круга). Обратная перестановка шкал давлений с минимального давления на давление аэродрома посадки выполняется при входе самолета в зону взлета и посад­ки (в зону круга).
Безопасная барометрическая высота для полетов ниже нижне­го эшелона рассчитывается по минимальной истинной безопас­ной высоте, абсолютной высоте наивысшей точки рельефа с уче­том искусственных препятствий и температуры воздуха (рис. 8.2) по формуле
H прив.без = H без.ист + H р — Δ H t,
где H без.ист — установленное значение минимальной безопасной истинной высоты для визуальных полетов ниже нижнего эшелона (по ПВП); H р — абсолютная высота наивысшей точки рельефа местности с учетом искусственных препятствий в пределах ширины трассы (маршрута); Δ H t — методическая температурная поправка высотомера.
Правила визуальных полетов (ПВП) по маршруту и в районе аэродрома применяются для самолетов с истинной скоростью не более 550 км/ч.

 
Расчет безопасной высоты по приведенному минимальному давлению

Рис. 8.2. Расчет   безопасной высоты по приведенному минимальному   давлению

Для визуальных полетов по маршруту ниже нижнего эшело­на установлены следующие минимальные истинные безопасные высоты:
1. Над равнинной, холмистой местностями и водными прост­ранствами— 100 м для   скорости полета   до   300 км/ч   и   200 м для скорости 301—550 км/ч.
2.  Над горной   местностью   с   высотой гор до 2000 м — 300 м.
3.  Над горной местностью с высотой пор более 2000 м — 600 м. Для визуальных полетов над горной местностью Hбез.ист берется вне зависимости от скорости полета самолета.
При расчете безопасной высоты для полетов по ПВП ниже нижнего эшелона по маршруту и в районе аэродрома в равнинной и холмистой местностях высота искусственных препятствий не учитывается, если фактическая и прогнозируемая видимости (по среднему значению градации) составляют 3 км и более, а скорость полета самолета не более 300 км/ч.
Командир экипажа обязан при полете в районе искусствен­ных препятствий обходить их визуально на удалении не менее 500 м.
Пример. Hр1 = 720 м; Hр2=150 м; Vи = 350 км/ч; t0=+26°.  Определить Hприв. без
Решение. 1. Определяем характер местности и минимальную истинную безопасную высоту полета; местность горная; Hвез. ист =300 м.
2. Определяем абсолютную безопасную высоту полета:
H абс.без = H без.ист + H Р = 300 + 720 = 1020 м.
3. Определяем температуру воздуха на полученной высоте и исправляем вы­соту на НЛ-10М на методическую температурную поправку:
tH = + 19°; t0,+ tH = +45°; H прив. без = 990 м.
Рассчитанная безопасная высота должна выдерживаться в по­лете с учетом инструментальной и аэродинамической поправок высотомера.

При полетах по ПВП вертикальное расстояние от самолета до нижней границы облаков должно быть не менее 50 м над равнин­ной, холмистой местностями, а также водными пространствами и не менее 100 м в горной местности.

Определение атмосферного давления, приведенного к уровню моря.

Обычно минимальное атмосферное давление на участках трассы, приведенное к уровню моря, определяется по синоптиче­ской карте, на которой оно дано относительно уровня моря. Но если на аэродроме, расположенном в равнинной и холмистой мест­ностях, нет метеостанции, то приведенное давление определяет экипаж (пилот) по барометрическому высотомеру. Для этого не­обходимо стрелки высотомера установить на отсчет, равный аб­солютной высоте аэродрома, а затем по шкале давления отсчи­тать приведенное давление на уровне моря.
Приведенное давление можно также рассчитать. В этом слу­чае по высотомеру определяют давление на аэродроме, а затем рассчитывают приведенное давление по упрощенной формуле
Р прив = Раэр± (Hаэр/11)
где Раэр — атмосферное давление на аэродроме; Hаэр — абсолют­ная высота аэродрома.
В формуле знак плюс соответствует положению аэродрома выше, а знак минус ниже уровня моря.
Для приведения давления аэродрома к уровню моря с боль­шей точностью пользуются следующей формулой: приведения давления аэродрома к уровню моря
где α — коэффициент объемного расширения воздуха, равный 1/273; to — температура воздуха на аэродроме.
Приведение давления к уровню моря на метеостанциях осу­ществляется по заранее рассчитанным таблицам.

Расчет безопасной высоты для района подхода. После входа самолета в район аэродрома посадки (за 5—10 мин до начала снижения) штурман обязан рассчитать рубеж начала снижения и безопасную высоту для района подхода.
Безопасная высота для района подхода рассчитывается в за­висимости от условий полета по давлению 760 мм рт. ст. или по приведенному минимальному давлению.
Для района подхода установлены следующие минимальные ис­тинные безопасные высоты:
1.   Для полетов по ППП — Нбез.ист=400 м.
2.  Для полетов по ПВП для самолетов со скоростями полета 300 км/ч и менее — Нбез.ист=100 м.
3.  Для полетов по ПВП   для самолетов со скоростями полета от 301 до 550 км/ч—Нбез.ист=200 м
Рельеф местности и искусственные препятствия в районе под­хода учитываются в полосе по 10 км в обе стороны от оси марш­рута при полетах по ППП и по 5 км при полетах по ПВП.
Пример, Нр= 540 м; местность холмистая; полет по ППП; Рприв мин = 750 мм рт. ст.; t0 = — 20°. Определить Н760без для района подхода.
Решение: 1. Определяем абсолютную  безопасную высоту полета: На6с.без = Hбез. ист + Нр = 400 + 540 - 940 м.
2.  Определяем    температуру воздуха на   полученной высоте   и исправляем высоту на методическую температурную поправку по НЛ-10М:
tH = -26°;   t0 + tH = — 46°;   Ниспр =1060 м.
3.  Находим барометрическую поправку к высоте и определяем безопасную барометрическую высоту полета по давлению 760 мм рт. ст:
Н760без = Ниспр + (760 —Рприв.мин) —11 = 1060 + (760 —750) —11 =1060 + 110 = 1170 м.

Расчет безопасной высоты для полета по схеме захода на по­садку. Безопасная высота для полета по схеме захода рассчи­тывается подавлению на аэродроме посадки (рис. 8.3). Расчет про­изводится по формуле
Наэр.без = Hбез. ист + ΔHp — ΔНt, или Наэр.без = МБВ — ΔНt.
МБВ — это минимальная безопасная высота полета по схеме захода на посадку. Указывается на схеме захода для полетов по ППП.
МБВ = Hбез. ист + ΔHp, где  ΔHp = Hр — Hаэр.
На схеме захода на посадку превышения рельефа и препятст­вий даны относительно уровня аэродрома.
Для полетов в зоне взлета и посадки установлены следующие минимальные истинные безопасные высоты:
1.  Для полетов по ППП для всех типов самолетов — Hбез. ист =300 м.
2. Для полетов по ПВП для самолетов со скоростью полета по кругу 300 км/ч и менее — Hбез. ист = 100 м.
3.   Для полетов по ПВП для самолетов со скоростью полета по кругу более 300 км/ч — Hбез. ист =200 м.
Превышения рельефа местности и искусственных препятствий учитываются в полосе по 10 км в обе стороны  от  оси  маршрута  захода  на посадку при полетах по ППП и по 5 км при полетах по ПВП.
Рассчитанная безопасная высота должна соблюдаться до вы­хода из четвертого разворота.
Пример. ΔHp = 155м ; t0= —5°; заход на посадку по приборам. Определить Hаэр.без
Решение. 1. Определяем минимальную безопасную высоту полета по схеме захода:
МБВ = Hбез.ист + ΔHp = 300 + 155 — 455 м.
2. Определяем температуру воздуха на полученной высоте и исправляем вы­соту на методическую температурную поправку на НЛ-10М:
tH= — 8°;   t0 + tH —13°;   Hаэр.без  = 490 м.
 
Расчет безопасной высоты для полета по схеме захода на по­садку

Распечатать ..

 
Другие новости по теме:

  • Классификация высот полета от уровня измерения
  • Ошибки барометрических высотомеров
  • Сокращенные обозначения и условные знаки, принятые в самолетовождении
  • Расчет времени и места начала снижения
  • Расчет времени и места набора высоты заданного эшелона


  • Rambler's Top100
    © 2009