www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Навигационные элементы полета и их расчет » Ошибки барометрических высотомеров
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Летатель­ный аппарат тяжелее воздуха
Самолет — самый распро­страненный сегодня летатель­ный аппарат тяжелее воздуха. Первые работы по созданию аэропланов, как тогда называ­ли самолеты, относятся к XIX веку. Огромная заслуга в создании первого в мире самолета принадлежит рус­скому исследователю и изобре­тателю, морскому офицеру Александру Федоровичу Мо­жайскому. В 1854 году он задумал построить воздухопла­вательный аппарат, кото ...

» Постройка шара-монгольфье­ра
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы. Постройка шара-монгольфье­ра. Работу начинают с ...

» Азимутальные проекции
Азимутальные проекции получаются путем переноса по опреде­ленному закону земной поверхности на плоскость, касательную к земному шару. Название азимутальных проекции получили благо­даря основному их свойству сохранять без искажений азимуты ли­ний, выходящих из точки касания картинной плоскости. Так называется плоскость, на ко­торую проектируется зе­мная поверхность. Точ­ка, из которой ведется проек ...

» Выбор параметров и влияние их на характеристики ротора
Качество ротора и коэффициента подъемной силы зависят, как это видно из уравнения предыдущего параграфа, от следующих параметров: δ - среднего профильного сопротивления; А - тангенса угла наклона кривой Cμ   по α для профиля лопасти; k - коэффициента заполнения; Θ - угла установки лопасти; γ - отвлеченной величины 

» Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с ...

» Модель планера А-1 «Пионер»
Модель планера А-1 «Пио­нер» (рис. 26). Данный планер относится к категории спортив­ных моделей и существенно отличается от описанных ранее. С ним можно выступать на соревнованиях почти всех ран­гов и выполнять нормативы для присвоения спортивных разрядов. Разумеется, изготов­ление такой модели под силу лишь авиамоделистам, имею­щим опыт конструирования и определенные навыки в ра­боте. Для построй ...

» Идея применения авторотирующего винта
Идея применения авторотирующего винта в качестве несущей поверхности и ее блестящее практическое осуществление, несмотря на ряд больших трудности, принадлежат испанскому инженеру Де-ля-Сиерва. Главная трудность при использовании авторотирующего винта как несущей поверхности заключалась в том, что в полете, когда плоскость вращения винта совпадает с направлением поступательной скорости или наклонна ...

» Определение летающих моделей
Модель планера — модель летательного аппарата, не обес­печенная собственной силой тяги, у которой подъемная си­ла образуется аэродинамиче­скими силами, действующими на неподвижно закрепленные поверхности. Запускают при помощи леера не длиннее 50 м. Технические требо­вания: площадь несущей по­верхности — 32—34 дм2, мини­мальная масса — 410 г, макси­мальная удельная грузоподъ ...

» Расчет приборной воздушной скорости для однострелочного указателя скорости
Приборная воздушная скорость рассчитывается для того, что­бы по указателю скорости выдерживать в полете, если это требу­ется, заданную истинную воздушную скорость. Приборная воздуш­ная скорость рассчитывается по формуле Vпр = Vи— (± ΔVм) — (± ΔV).

» Шкалы навигационной линейки и их назначение
Навигационная линейка имеет не равномерные шкалы, а лога­рифмические. При решении задач с помощью НЛ-10М использует­ся одновременно две, а иногда и больше шкал, которые называют­ся смежными.

» Кордовая модель самолета «Юниор»
Кордовая модель самолета «Юниор» (рис. 32) разрабо­тана для первоначального обу­чения пилотированию моде­лей данной категории. Прежде чем приступить к изготовлению любой модели самолета, и к этой конкретно, надо вычер­тить ее рабочий чертеж. Работу над моделью можно начать с изготовления кры­ла — наиболее сложной дета­ли данного летательного аппа­рата. Крыло модели «Юниор» со­стоит из 10 нер ...

» Организация авиамодельного кружка
Кру­жок — одна из форм работы по техническому творчеству. Он объединяет школьников, интересующихся определенной областью техники. Цель заня­тий любого технического круж­ка — приобщение ребят к тру­ду, развитие их творческих способностей, формирование умений и навыков. Авиамодельный кружок объе­диняет ребят, увлеченных авиа­цией. Для многих из них авиамоделизм, это увлека­тельное и серь ...

» Компенсация радиодевиации
Радиодевиация компенсируется в следующем порядке: 1.  Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки. 2.  Снять скобу с указателя радиодевиаций.

» Предполетная проверка КС-6
Для проверки КС в режиме «МК» необходимо: 1.  Включить курсовую систему. 2.  Установить на УШ и КМ-4 магнитное склонение, равное ну­лю. 3.  Установить переключатель режимов работы на пульте управ­ления   в положение   «МК». 4. Установить переключатель    «Осн. — Зап.»     в    положение «Осн.». 5.  Через 5 мин после включения КС нажать кнопку быстрого согласования и согласовать указатели, ко ...

» Самолетовождение с использованием самолетной радиолокационной станции рпсн-2 («эмблема») - Назна ...
Радиолокационная станция предупреждения столкновений и на­вигации РПСН-2 предназначена для обеспечения безопасности по­летов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и назем­ными препятствиями. Кроме того, с помощью РПСН-2 можно ре­шать следующие задачи самолетовождения: ...

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Модель ракеты «Родник»
Модель ракеты «Родник» (рис. 60) разработана в пио­нерском лагере с таким же на­званием для сброса вымпелов и листовок на праздниках. Корпус склеивают на оправке диаметром 70 мм из трех слоев бумаги. В донной части закрепляют обойму из пенопласта под двигатель МРД 20-10-4. Если же пред­полагается применение других МРД, то лучше вклеить ста­кан для сменных моторных отсеков, в которые устанавли­вают ...

» Ориентирование карты по странам света
Ориентировать карту по странам света — это значит располо­жить ее так, чтобы северные направления истинных меридианов карты были направлены на север. В практике самолетовождения ориентирование карты по странам света осуществляют по компасу или земным ориентирам.

» Подготовка к полету с использованием РСБН-2
Опыт использования РСБН-2 показывает, что достаточно пол­ная реализация возможностей этой системы прежде всего зави­сит от заблаговременной  подготовки  данных  для ее применения и оперативностиработы экипажа в полете, поэтому экипажи са­молетов, на которых установлена   аппаратура   РСБН-2,   обязаны    в   период   предварительной подготовки к полету подготовить по всем участкам трассы необходим ...

» Заход на посадку по кратчайшему пути
Заход на посадку по кратчайшему пути предусматривает под­ход к заданным точкам прямоугольного маршрута. В основу пост­роения такого захода принят прямоугольный маршрут. Однако выполняется он не полностью, а от траверза ДПРМ или от одного из разворотов. Снижение с маршрута и заход на посадку выполняются при тех же условиях и с теми же ограничениями, что и заход с прямой.

» Подготовка к проведению радиодевиационных работ
Подготовка к проведению радиодевиационных работ включает: 1. Подготовку девиационного пеленгатора, бланков протоколов выполнения радиодевиационных работ и бланков графиков. 2.  Выбор для выполнения радиодевиационных работ площадки, удаленной не менее чем на 150—200 м    от    стоянок    самолетов, строений и линий высоковольтных передач.    Площадка    должна быть горизонтальной, в направле ...

» Подготовка данных для применения КС-6
Для применения КС-6 в полете в различных режимах работы нужно предварительно на земле подготовить необходимые дан­ные. Для использования КС в режиме «ГПК» при подготовке к по­лету необходимо произвести дополнительную разметку маршрута для полета по ортодромии. В этом случае, кроме обычной проклад­ки и разметки маршрута, необходимо:

» Тепловой воздушный шар
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те ...

» Установка самолета на заданный магнитный курс
Для определения девиации компаса необходимо знать, каков магнитный курс самолета, и сравнить его значение с компасным курсом, так как Δк = МК - КК. Самолет устанавливается на заданный МК: 1)   пеленгованием продольной оси самолета; 2)   по магнитному пеленгу ориентира.

» Применение РСБН-2 в полете
Угломерно-дальномерная система может быть применена в по­лете на любом участке трассы в зоне ее действия. Используется она по плану, намеченному в период подготовки к полету. В этом плане указывается, в каком режиме необходимо использовать си­стему на том или другом участке трассы и для решения какой навигационной задачи ее следует применять. Рассмотрим методы использования системы и порядок рабо­ ...

» Ракета— летательный аппа­рат тяжелее воздуха
Ракета— летательный аппа­рат тяжелее воздуха, подъем­ная сила которого возникает по принципу реактивного дви­жения. Этот принцип заклю­чается в отталкивании ра­кеты от массы струи газов, образованных при сгорании топлива и истекающих из двигателя. Своим рождением первые ракеты обязаны изобретению пороха. Но в те далекие вре­мена ракеты служили лишь для фейерверков. Потом они нашли применение ...

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Способы определения ортодромических путевых углов
В практике ортодромические путевые углы по участкам марш­рута (см. рис. 23.4) могут определяться одним из следующих спо­собов: 1.  Учетом  угла   разворота. Для применения этого способа вначале определяют ортодромический путевой угол первого этапа маршрута, равный азимуту ча­стной ортодромии, измеренный в точке вылета самолета. Последу­ющие путевые углы определяются по предыдущему с учетом угла ра ...

» Курсовая система КС-6, ее назначение и комплект
Курсовая система КС-6 представляет собой централизованное устройство, объединяющее магнитные, гироскопические и астроно­мические средства измерения курса, предназначенное для опреде­ления и выдерживания магнитного, истинного и ортодромического курсов самолета, углов разворота, а также для выдачи сигналов курса в автопилот, навигационный индикатор НИ-50БМ и другие потребители. Совместно с курсовой ...

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Ошибки барометрических высотомеров
Самолетовождение » Навигационные элементы полета и их расчет  |   Просмотров: 9044  
 
Барометрические высотомеры имеют инструментальные, аэро­динамические и методические ошибки.
Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ де­талей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый высотомер имеет свои инструментальные ошибки. Они определяются путем проверки высотомера, заносятся в спе­циальную таблицу и учитываются в полете.
Аэродинамические ошибки ΔНа возникают в резуль­тате неточного измерения атмосферного давления на высоте поле­та вследствие искажения воздушного потока, особенно при поле­те на больших скоростях. Эти ошибки зависят от скорости поле­та, типа приемника, воспринимающего атмосферное давление, и места его расположения. Они определяются при испытаниях са­молетов и заносятся в таблицу поправок. Для упрощения учета инструментальных и аэродинамических поправок составляется таблица показаний высотомера с учетом суммарных поправок, которая помещается в кабине самолета (табл. 5.1).
Таблица 5. 1
Показания высотомера с учетом  суммарных поправок
 
Заданная высота  полета, м    Показания высотоме­ра, м    Заданная высота полета, м    Показания высотоме­ра, м      
0    0    4 500    4 550      
600    640    4 800    4 860      
900    960    5 100    5 170      
1 200    1 250    5 400    5 470      
1 500    1 540    5 700    5 750      
1 800    1 860    6 000    6 070      
2 100    2 160    6 600    6 650      
2 400    2 450    7 200    7 250      
2 700    2 760    7 800    7 740      
3 000    3 060    8 400    8 320      
3 300    3 360    9 000    8 930      
3 600    3 660    10 000    9 920      
3 900    3 980    11 000    10 910      
4 200    4 260    12 000    11 840     
Методические ошибки возникают вследствие несовпа­дения фактического состояния атмосферы с расчетными данны­ми, положенными в основу для расчета шкалы высотомера. Шкала высотомера рассчитана для условий стандартной атмосферы на уровне моря: давление воздуха Ро=760 мм рт. ст., температура t0= + 15°С, температурный вертикальный градиент tгр=6,5° на 1000 м высоты.
Использование стандартной атмосферы предполагает, что за­данной высоте соответствует вполне определенное давление. Но так как в каждом полете действительные условия атмосферы не сов­падают с расчетными, то высотомер показывает высоту с ошиб­ками.
Барометрическому высотомеру присущи также ошибки вслед­ствие того, что он не учитывает изменения топографического рель­ефа местности, над которой пролетает самолет.
Методические ошибки барометрического высотомера делятся на три группы:
1)   ошибки от изменения атмосферного давления у земли;
2)   ошибки от изменения температуры воздуха;
3)   ошибки от изменения рельефа местности.
Ошибки от изменения атмосферного давления у земли. Ба­рометрический высотомер измеряет высоту полета относительно уровня изобарической поверхности, атмосферное давление кото­рой установлено на шкале давлений высотомера. Он не учитыва­ет изменения давления по маршруту. Обычно атмосферное давле­ние в различных точках земной поверхности в один и тот же мо­мент неодинаковое. На рис. 5.2 показано, что на аэродроме выле­та давление равно 760 мм рт. ст., а по маршруту полета оно в оп­ределенных точках равно 750 и 765 мм рт. ст. Перед вылетом стрелки высотомера устанавливают на нуль, при этом шкала дав­лений высотомера установится на давление аэродрома вылета (в приведенном примере шкала давлений установится на отсчет 760 мм рт. ст.). Если пилот по маршруту будет выдерживать за­данную приборную высоту, то истинная высота будет изменяться в зависимости от распределения атмосферного давления у земли. При падении атмосферного давления по маршруту истинная вы­сота будет уменьшаться, при повышении давления — увеличиваться. Как видно из рисунка, изменение истинной     высоты    происходит    вследствие    изменения    атмосферного
 
Ошибки высотомера от изменения давления у земли

Рис. 5.2. Ошибки высотомера от изменения давления у земли
Ошибки высотомера от изменения температуры воздуха
 
Рис. 5.3 Ошибки высотомера от изменения температуры воздуха

давления на уровне, относи­тельно которого ведется отсчет истинной высоты.
Изменение атмосферного давления с высотой характеризуют барометрической ступенью — высотой, на которую надо подняться или опуститься от исходного уровня, чтобы давление изменилось на 1 мм рт. ст.
В практике барометрическую ступень для малых высот берут равной 11 м. Следовательно, каждому миллиметру изменения давления у земли соответствует 11 м высоты, т. е. ΔНб=11·ΔР.
Ошибки от изменения атмосферного давления у земли учиты­ваются следующим образом:
1)   перед вылетом — установкой стрелок высотомера  на  нуль;
2)   перед посадкой — установкой на высотомере давления аэро­дрома;
3)   при расчете высот — путем учета поправки на изменение ат­мосферного давления (ΔНб).
Ошибки от изменения температуры воздуха. Шкала высото­мера тарируется по стандартной средней температуре воздуха в слое измеряемой высоты. Поэтому высотомер будет правильно по­казывать высоту полета только при совпадении фактической сред­ней температуры воздуха с расчетной. Но в реальных условиях фактическая температура воздуха, как правило, не совпадает с расчетной. Поэтому высотомер показывает высоту с ошибкой. Сущность этой ошибки заключается в том, что при изменении тем­пературы воздуха у земли происходит изменение температуры и давления воздуха на высоте. В холодное время года воздух стано­вится более плотным, и в этом случае давление с поднятием на вы­соту уменьшается быстрее, чем в теплое время, когда воздух обла­дает меньшей плотностью.
Методическая температурная поправка высотомера
ΔНt=ΔНпр  Методическая температурная поправка высотомера
 

где Нпр— приборная высота полета; tср.фак — средняя фактиче­ская температура воздуха в слое от нулевого уровня до высо­ты полета; ΔTср —разность между средней фактической температурой и средней стандартной температурой для данной, высоты.
Знак поправки определяется знаком ΔTср.
Из формулы следует, что высотомер при температурах у зем­ли ниже +15° будет завышать, а при температурах выше +15° за­нижать показания высоты (рис. 5.3).
Ошибки высотомера от изменения рельефа местности
Рис. 5.4.  Ошибки высотомера от изменения рельефа местности
 
Температурная ошибка особенно опасна при полетах на малых высотах и в горных районах в холодное время года. В практике считают, что для малых высот каждые 3° отклонения фактической температуры воздуха от стандартной вызывают ошибку, равную 1% измеряемой высоты. Обычно методическая температурная по­правка высотомера учитывается с помощью НЛ-10 М.
Ошибки от изменения рельефа местности. Эти ошибки возни­кают потому, что высотомер в продолжение всего полета указы­вает высоту не над пролетаемой местностью, а относительно уров­ня изобарической поверхности, атмосферное давление которого установлено на высотомере. Чем разнообразнее рельеф пролетае­мой местности, тем больше будут расходиться показания высото­мера с истинным значением высоты (рис. 5.4).
Для определения истинной высоты полета необходимо учиты­вать поправку на рельеф пролетаемой местности. Высота релье­фа определяется по карте. При расчете истинной высоты поправ­ка на рельеф алгебраически вычитается из абсолютной высо­ты, а при расчете приборной высоты прибавляется.

Распечатать ..

 
Другие новости по теме:

  • Ошибки указателя воздушной скорости
  • Классификация высот полета от уровня измерения
  • Способы измерения высоты полета
  • Безопасная высота полета и ее расчет
  • Расчет показания широкой стрелки КУС для заданной истинной скорости


  • Rambler's Top100
    © 2009