www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Полеты в особых условиях » Особенности самолетовождения в Арктике и Антарктике
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с ...

» Видоизмененная поликоническая (международная) проекция
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1 : 1 000 000. Строится она по особому закону, принятому международным соглашением.

» Предполетная проверка НИ-50БМ
Для проверки НИ-50БМ перед полетом необходимо: 1.  Включить электропитание   прибора   по  переменному  и  по­стоянному току. 2.  Включить и подготовить к работе ГИК.    Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3.  Установить на автомате курса и задатчике ветра МУК=МК самолета. 4.  Ввести в задатчик ветра направлен ...

» Самолетовождение с использованием наземных радиопеленгаторов - Задачи самолетовождения, решаемые с ...
Наземный радиопеленгатор — это специальное прием­ное радиотехническое устройство, позволяющее определять нап­равление на самолет, на котором работает передающая радиостан­ция. Данные пеленгации наземного радиопеленгатора могут быть использованы только при наличии двусторонней связи экипажа самолета с землей.

» Расчет элементов захода на посадку по малому прямоугольному маршруту при ветре
Для обеспечения полета строго по установленной схеме захо­да на посадку необходимо учитывать влияние ветра. Рассмотрим порядок расчета элементов захода на посадку на примере. Пример. ПМПУ=90°; δ = 60°; U=12 м/сек; Нв.г = 400 м; УНГ  = 2°40'; круг правый; L = 6950 л; t2 = 20 сек; S3 = 5830л; t3 = 72 сек; КУР3=130°; КУР4 = 77°; Sг.п = 1950 м; Sт.в.г = 8600 м; само­лет Ан-24. Рассчитать элеме ...

» Метательные модели плане­ров
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, наб ...

» Расчет показания широкой стрелки КУС для заданной истинной скорости
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V). Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

» Ошибки указателя воздушной скорости
Указатель воздушной скорости имеет инструментальные, аэро­динамические и методические ошибки. Инструментальные ошибки ΔV возникают по тем же причинам, что и аналогичные ошибки высотомера. Они определяются путем сличения показаний указателя скорости с показания­ми точно выверенного прибора, заносятся в график или таблицу и учитываются при расчете скорости.

» Планирование и вертикальный спуск автожира
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

» Модель ракеты «Пионер»
Модель ракеты «Пионер» (рис. 59) снаряжается двига­телем МРД 10-8-4. Технология ее изготовления немного отли­чается от предыдущей. Корпус клеят из плотной бумаги в два слоя   на   оправке  диаметром 55 мм. Четыре стабилизатора вырезают из пластины пено­пласта ПС-4-40 толщиной 5 мм, профилируют и оклеивают пис­чей бумагой. После высыха­ния их обрабатывают шлифо­вальной шкуркой и клеем ПВА крепят вс ...

» Особенности самолетовождения над безориентирной местностью
Условия самолетовождения    над    безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

» Направления на земной поверхности
В самолетовождении принято направления на земной поверх­ности измерять в градусах относительно северного направления ме­ридиана. Направления могут указываться азимутом (истинным пе­ленгом) и путевым углом. Азимутом, или истинным пеленгом, ориентира назы­вается угол, заключенный между северным направлением мериди­ана, проходящего через данную точку, и направлением на наблю­даемый ориентир (рис. 1.4 ...

» Уравнение махового движения лопасти
Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)

» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету
Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным до­кументом, в котором отражаются применяемые способы самолето­вождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...

» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем
Радиотехнические средства среди других средств самолетово­ждения занимают одно из важнейших мест и находят самое ши­рокое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самоле­товождение. Радиотехнические средства самолетовождения по месту рас­положения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: при­в ...

» Курсы самолета девиация магнитных компасов
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно пр ...

» Расчет максимальной дальности рубежа возврата на аэродром вылета и на запасные аэродромы
Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может слу ...

» Определение радиодевиации
Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или види­мой радиостанции.

» Защита для жиклера
Устанавливая ми­кродвигатели с передним рас­пределением на модели воз­душного боя или учебные, всегда идут на определенный риск. Дело в том, что при неудачных посадках у мото­ров, как правило, ломается игла жиклера или, что еще хуже, повреждается сам жик­лер. Выход из этого положения весьма прост: достаточно вы­пилить из дюралюминиевого профиля уголок размером 25Х25 мм — элементарный пре­дох ...

» Выход на линию заданного пути
Выход на ЛЗП — важный этап работы экипажа. Он заключа­ется в определении такого курса следования, при выдерживании которого фактический путевой угол был бы равен заданному пу­тевому углу или отличался от него не более чем на 2°. В зависимости от навигационной обстановки курс следования может определяться одним из следующих способов: 1)   по прогностическому или шаропилотному ветру; 2)   по в ...

» Расчет времени и места догона впереди летящего самолета
Чтобы рассчитать время догона впереди летящего самолета, необходимо знать расстояние между самолетами, путевые скорости и время пролета самолетами контрольного ориентира. Время   догона   впереди летящего   самолета t дог =S/ W2 — W1

» Использование НИ-50БМ для счисления пути
При радиолокационной ориентировке для счисления пути по дальности может быть использован НИ-50БМ, для чего необхо­димо: 1.  На подобранном курсе следования одним из возможных ме­тодов определить путевую скорость самолета. 2.  На  автомате курса и задатчике ветра установить МУК = ЗМПУ. 3.  На задатчике ветра установить НВ=МУК, если W>V, или НВ=МУК±180°, если  W

» Классификация ориентиров и их главные отличительные признаки
Визуальная ориентировка ведется по земным ориентирам. Ори­ентирами называются все объекты на земной поверхности или отдельные ее характерные участки, выделяющиеся на общем лан­дшафте местности, изображенные на карте и видимые с самолета. Они могут использоваться для определения места самолета. Ориентиры подразделяются на линейные, площадные и то­чечные.

» Автожир представляет собой летательную машину тяжелее воздуха
Автожир представляет собой летательную машину тяжелее воздуха, С точки зрения конструкции автожир можно назвать самолетом с вращаю­щейся несущей поверхностью, так как последней является авторотирующий (свободно вращающийся) винт-ротор большого диаметра и малого геометриче­ского шага, расположенный над фюзеляжем так, что ось его нормальна (или близка к нормали) оси фюзеляжа. Авторотирует винт-ротор ...

» Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) =   =   =111 км. 1ґ дуги меридиана (экватора) =   = 1,852 км = 1852 м.

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Модель электролета наборной конструкции
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки:   для   кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток ...

» Сокращенные обозначения и условные знаки, принятые в самолетовождении
Точки и линииМС — место   самолета ИПМ — исходный   пункт   маршрута ППМ — поворотный   пункт   маршрута КО — контрольный   ориентир КЭ — контрольный   этап ЛЗП — линия   заданного   пути ЛФП — линия фактического пути АЛП — астрономическая   линия   положения РНТ — радионавигационная   точка ОПРС — отдельная   приводная   радиостанция РСБ ...

» Основные точки, линии и круги на земном шаре
Земля непрерывно вращается с запада на восток. Диаметр, во­круг которого происходит это вращение, называется осью враще­ния Земли (рис. 1.2). Эта ось пересекается с поверхностью Земли в двух точках, ко­торые называются географическими полюсами: один Се­верным (С), а другой Южным» (Ю). Северным называется тот по­люс, в котором, если смотреть на него сверху, вращение Земли на­правлено против хода ча ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Особенности самолетовождения в Арктике и Антарктике
Самолетовождение » Полеты в особых условиях  |   Просмотров: 12316  
 
Арктикой называется северная географическая зона зем­ного шара, расположенная за Северным полярным кругом (от се­верной широты 66°33') до Северного географического полюса.
Антарктикой называется южнополярный бассейн, лежащий от южной широты 66°33' до Южного географического полюса. Антарктика — это обширная зона, примыкающая к Южному по­люсу и включающая в себя Антарктиду и южные части Тихого, Индийского и Атлантического океанов с расположенными здесь островами.
Антарктида — это шестой континент нашей планеты, са­мый изолированный материк Земного шара. Он отделен от дру­гих материков большими водными пространствами.
Условия самолетовождения в Арктике и Антарктике характе­ризуются следующими особенностями:
1.   Однообразием   местности   с   малым   количеством   ориенти­ров,  позволяющих вести   визуальную и   радиолокационную ори­ентировку.
Материковая часть Арктики представляет собой тундру. Зи­мой местность сплошь покрыта снегом и с воздуха видна, как не­объятная снежная пустыня с очень малым количеством ориен­тиров. Населенные пункты встречаются редко. Имеется несколь­ко крупных рек, расположенных, в меридиональном направлении.
Побережье Арктики изрезано большими и малыми заливами, губами и бухтами, которые образуют множество полуостровов, что при полетах вдоль побережья позволяет вести ориентировку. Характерными ориентирами являются острова северных морей. Летом они наблюдаются хорошо, но зимой сливаются с заснежен­ной ледяной поверхностью моря.
Большую часть года северные моря покрыты льдом, который перемещается под влиянием морских течений и ветров.
Побережье Арктики изобилует озерами. Берега их низкие и зимой сливаются с тундрой. Летом появляется много дополни­тельных водоемов.
Антарктида бедна ориентирами. Она почти целиком покрыта мощным ледяным покровом, достигающим толщины более 1 км. Антарктические льды широким поясом (до 1500 км) блокируют материк. Вокруг ледяного пояса встречается много плавучих ле­дяных гор — айсбергов. Надежными естественными ориентирами в Антарктиде являются отдельные горные вершины, высота кото­рых достигает от 2000 до 6000 м, потухшие и несколько действую­щих вулканов, а также очертания материка.
2.   Неустойчивостью метеорологической обстановки и преобла­данием низких средних температур.
Для Арктики характерна неустойчивая метеорологическая об­становка. Наличие больших водных бассейнов, частью открытых и частью закрытых льдом, близость теплого течения Гольфстрим и холодного северного течения создают специфические метеоро­логические условия погоды. Неустойчивость метеорологической об­становки выражается в резком изменении направления и скоро­сти ветра (от штиля до шторма), в частом изменении высоты и характера облачности, в неожиданном натекании тумана с моря на побережье. Сильные ветры осенью и зимой (до 40 м/сек) ча­сто приносят снежную пургу и поземку. Облачность в Арктике является обычным явлением. Число ясных дней в году колеблет­ся от 20 до 46. Среднемесячная температура девяти зимних ме­сяцев— ниже нуля. Лучшим временем для полетов в Арктике является период с начала марта до середины мая. В это время за­канчивается полярная ночь и наступает улучшение погоды. Климат в Антарктике более суров, чем в Арктике. На матери­ковой части наблюдаются сильные ветры (до 60 м/сек) и низкие температуры (летом минус 35—38°, а зимой до минус 87°). Луч­шим временем для полетов в Антарктике является период по­лярного дня, который тянется с сентября по март.
Сложность метеорологической обстановки и суровость клима­та делают полеты в Арктике и Антарктике весьма трудными.
3.  Большой величиной магнитного склонения и резким его из­менением на небольших расстояниях, наличием магнитных ано­малий и магнитных бурь. В районе Арктики и Антарктики магнитное склонение дости­гает больших значений и довольно резко изменяется на сравни­тельно небольших расстояниях как по причине близости полюсов, так и вследствие наличия магнитных аномалий. В полярных рай­онах магнитное склонение также изменяется в период магнитных бурь, связанных с солнечной активностью (до 10—20°, а иногда до 50—60°).
В Арктике и Антарктике наблюдаются полярные сияния, ко­торые значительно затрудняют применение астрономической ориентировки вследствие того, что небесные светила теряются в светлых переливах сияния и их трудно различить.
4.   Неустойчивостью   показаний  магнитных   и   гиромагнитных компасов   вследствие   малой   величины   горизонтальной составля­ющей магнитного поля Земли. Районы Арктики и Антарктики отличаются от других районов распределением элементов земного магнетизма. Горизонтальная составляющая магнитного поля Земли по мере приближения к району магнитного полюса сильно уменьшается и с широты 78° становится настолько мала, что магнитные компасы ведут себя очень неустойчиво и пользоваться ими почти невозможно. Компа­сы типа ДГМК могут быть использованы до широты 80—82°. Для полетов в районах полюсов используются ГПК, курсовые системы и астрономические компасы.
5.   Неустойчивостью распространения радиоволн, особенно  ко­ротких, и наличием помех  радиотехническим  средствам. Во время магнитных бурь распространение радиоволн стано­вится неустойчивым, что ухудшает радиосвязь и ограничивает при­менение радиотехнических средств. При полете в среде, насыщен­ной ледяными иглами или снежной пылью, возникают помехи ра­диотехническим средствам, которые образуются местными разря­дами между разноименно заряженными частицами. УКВ не под­вергаются влиянию ионосферных и атмосферных помех, но даль­ность их распространения равна дальности прямой геометриче­ской видимости.
6.  Малым количеством наземных радиотехнических средств на­вигации.
7.  Особенностью естественного освещения. Арктический и Антарктический районы начинаются от по­лярных кругов, которые являются границами полярной ночи и дня. Для районов Арктики и Антарктики характерны длительные периоды полярного дня, сумерек и полярной ночи. Поэтому при подготовке к полету необходимо определять условия естественно­го освещения на разных участках маршрута.
8. Особенностями географического положения, вызывающего большие углы схождения меридианов и быстрое изменение долго­ты при полете самолета.
В связи с большими углами схождения меридианов затрудня­ется выполнение полета по маршруту с помощью магнитного ком­паса. Линия фактического пути  при полете по магнитному компа­су имеет большую кривизну, что приводит, с одной стороны, к значительному удлинению пути, а с другой — к ухудшению рабо­ты некоторых навигационных приборов,
Большая кривизна локсодромии требует непрерывного доворота самолета в горизонтальной плоскости. Эти довороты вызы­вают ускорения, которые влияют на точность работы некоторых навигационных приборов. Поэтому при полетах в высоких широ­тах курс самолета лучше измерять относительно не истинных или магнитных меридианов, а относительно условных мериди­анов.
Особенности штурманской подготовки к полету в Арктике и Антарктике. При подготовке к полету в Арктике и Антарктике, помимо общей подготовки, экипаж обязан:
1.   Изучить  все материалы  аэрографических  и климатических описаний района полетов, а при полете над морем — специаль­ные лоции моря.
2.  Изучить особые указания и инструкции, регламентирующие полеты над морем.
3.  Проконсультироваться по вопросам самолетовождения с дру­гими экипажами, имеющими опыт полетов в данном районе.
4.  Подготовить     необходимый    набор     полетных,   бортовых, морских   и    магнитных   карт    и   различные   справочные   мате­риалы.
5.  Изучить вид звездного неба для времени полета.
6.  Подготовить необходимые пособия для астрономических вы­числений.
7.   Разработать штурманский   план   полета   с   использованием ортодромических методов и средств астрономической ориентиров­ки.
8.  Проверить правильность установки бортового визира, астро­компаса, поправку к авиасекстанту и работу осреднителя.
Для полета в полярных районах применяются карты следую­щих масштабов и проекций:
1.  Для побережья Арктики — карта в международной проек­ции масштабов 1:1 000 000 и 1:2 000 000.
2.  Для центрального района Арктики — карта центральной по­лярной проекции масштаба. 1:2 000000 и карта полярной стерео­графической  проекции      масштабов      1:2000000,     1:3000000 и 1:4 000 000.
Для упрощения измерений путевых углов, прокладки пелен­гов, использования астрокомпасов и для удобства самолетовож­дения при полетах севернее широты 75° применяют систему условных меридианов, которая бы­ла предложена заслуженным штурманом СССР В. И. Аккуратовым.
 
 Сетка условных меридиа­нов
 
Сетка условных меридиа­нов наносится на картах, ис­пользуемых для полетов в по­лярных районах, при их изда­нии. Одна группа условных меридианов наносится парал­лельно гринвичскому мери­диану красным цветом, а вто­рая группа—параллельно ме­ридиану 90° восточной долготы  синим цветом (рис. 21.1). От условных меридианов отсчиты­ваются путевые углы, курсы, пеленги и направление ветра. При­менение сетки условных меридианов облегчает работу штурмана. Линия пути пересекает условные меридианы под одним и тем же углом, поэтому условные ИПУ по маршруту можно измерять тран­спортиром от любого условного меридиана.
Для измеренного УИПУ рассчитывается условный ИК, кото­рый выдерживается на данном участке по ГПК или по астро­компасу.
Переход от направления относительно условного меридиана к направлению относительно географического меридиана места и наоборот выполняется по формулам:
Переход от направления относительно условного меридиана к направлению относительно географического меридиана ;   ИПУ = УИПУ90 — 90° ±  Переход от направления относительно условного меридиана к направлению относительно географического меридиана;
Переход от направления относительно условного меридиана к направлению относительно географического меридиана ; УИПУ90 = ИПУ + 90°   Переход от направления относительно условного меридиана к направлению относительно географического меридиана Переход от направления относительно условного меридиана к направлению относительно географического меридиана.
Относительно условных меридианов в любой точке маршрута можно откладывать условные ИК для счисления пути и условные истинные пеленги самолета для определения своего местонахож­дения.
Условный ИПС рассчитывается по формуле: УИПС = УИК+ +КУР±180°.
При измерении направлений относительно условных меридиа­нов отпадает необходимость в учете углов схождения меридианов, а также нет необходимости в знании долготы местонахождения самолета при использовании астрокомпаса.
Прокладка маршрута для полетов в полярных районах про­изводится по общим правилам с дополнительным нанесением све­дений, необходимых для самолетовождения. Подготовка карты для самолетовождения выполняется по средним МПУ и по ОПУ. Путевые углы наносятся в начале каждого участка маршрута. При этом в числителе ставится МПУ, а в знаменателе ОПУ. Справа от записи путевых углов указывается расстояние. МПУ рассчитываются и наносятся на карту через каждые 5° их изменения, а при постоянном МПУ — через 200—400 км в зависимости от масштаба карты.
У всех поворотных точек указывается значение широты, дол­готы и предвычисленных пеленгов. При больших расстояниях между поворотными точками предвычисленные пеленги отмечают­ся не реже чем через каждые 100 миль.
При полете в районе полярных морей на борту самолета дол­жен быть набор подготовленных морских карт. При подготовке на них наносятся:
а)  береговая черта — синим цветом;
б)   граница территориальных вод — красным цветом;
в)   высоты береговой черты и островов — в метрах;
г)  дополнительная координатная сетка  (при  необходимости);
д)   точки возможных встреч с морскими судами.
Особенности выполнения полета в Арктике и Антарктике, По­леты над полярными районами Северного и Южного полушарий выполняются с учетом их физико-географических и навигационных условий. При выполнении полетов в указанных районах необхо­димо:
1.  Для обеспечения необходимой точности и самоконтроля са­молетовождение осуществлять путем комплексного использования всех технических средств, особенно астрономических.
2.  Вследствие    неустойчивой    работы      магнитных    компасов курсы самолета выдерживать   по    ГПК, который устанавливает­ся   по   астрокомпасу   не   реже   чем через   каждые   15 мин   по­лета.
3.   При  использовании  наземных радиотехнических  средств в полярных морях отдавать предпочтение радиолокаторам, берего­вым   длинноволновым   радиопеленгаторам   и веерным  радиомая­кам (ВРМ-5).
4.   При полетах над морем выводить самолет на ЛЗП с рас­считанным курсом следования по известным данным о ветре,  а если эти данные отсутствуют, то подбором курса по углу сноса.
5.  Угол сноса и путевую скорость на средних и больших вы­сотах определять бортовым визиром по дрейфующим льдам, греб­ням волн, ветровым полосам и барашкам.
6.  Контроль пути при полете над морем вне видимости берего­вой   черты   осуществлять   при помощи   точной   инструментальной прокладки, радиопеленгования и прокладки на карте астрономи­ческих линий положения самолета. В условиях видимости берего­вой черты контроль пути дублировать визуальной ориентировкой по береговым ориентирам, видимым с самолета.
7.   При полетах на малых высотах в условиях отсутствия ви­димости небесных  светил, ограниченной  горизонтальной  видимо­сти и в облаках курс самолета    выдерживать по гиромагнитному компасу или ГПК (сверяя его показания с показаниями   магнит­ного компаса через каждые 10 мин полета) с последующей про­веркой при помощи астрономических средств  (при выводе самолета за облака) и внесением необходимых поправок.
8.   При полетах в условиях обледенения и ограниченной види­мости   (в  снегопаде,  в  облаках), когда радиосвязь   может быть неустойчивой или вовсе отсутствовать, самолетовождение осущест­влять при помощи курсовых систем в режиме «ГПК» с одновре­менным счислением пути методом штилевой прокладки.
9.  При выполнении полетов в высокие широты Арктики и Ан­тарктики   командир корабля   независимо от  запроса   диспетчера обязан каждые 30 мин сообщать координаты своего местонахож­дения.

Распечатать ..

 
Другие новости по теме:

  • Использование курсовых приборов самолета Ан-24
  • Классификация авиационных карт по назначению
  • Курсы самолета девиация магнитных компасов
  • Азимутальные проекции
  • Особенности самолетовождения при полетах в особых условиях - Особенности ...


  • Rambler's Top100
    © 2009