Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /var/www/fastuser/data/www/livit.ru/engine/classes/mysqli.class.php on line 162
Использование радиолокации и навигации » Летательные аппараты - Авиационный моделизм и самолетовождение
» Карты, применяемые в авиации - Назначение карт В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях: 1) прокладки и изучения маршрута полёта; 2) измерения путевых углов и расстояний между пунктами маршрута; 3) определения географических координат пунктов; 4) нанесения точек расположения радиотехнических средств, обеспечивающих полет; 5) получения ...
» Бумажная модель планера «ДОСААФ» Для изготовления модели планера «ДОСААФ» (рис. 18) кроме бумаги, ножниц, линейки и карандаша понадобится еще и клей. Лучше всего применять клей ПВА, а бумагу — из альбомов для рисования. С рисунка по клеткам переносят форму фюзеляжа на сложенную вдвое бумажную заготовку и вырезают его. Затем таким же образом вырезают крыло, груз, лонжерон и киль. На шаблонах частей стрелкой указано ...
» Ориентирование карты по странам света Ориентировать карту по странам света — это значит расположить ее так, чтобы северные направления истинных меридианов карты были направлены на север. В практике самолетовождения ориентирование карты по странам света осуществляют по компасу или земным ориентирам.
» Заход на посадку по радиолокационной системе РСП Наземная радиолокационная система посадки РСП является резервным средством для захода на посадку по приборам и применяется, как правило, по запросу командира корабля, а в отдельных случаях — по требованию диспетчера. При заходе на посадку по системе РСП экипаж обязан маневрирование при подходе к аэродрому и заходе на посадку выполнять по команде диспетчера. Маневрирование осуществляется в ...
» Уравнение махового движения лопасти Уравнение махового движения напишем, исходя из условия равенства нулю суммы моментов всех сил лопасти относительно горизонтального шарнира, а именно (фиг. 59)
» Игры и соревнования Одно из доступных и простых — соревнование иа время полета моделей с парашютом. Если позволяют условия, можно проводить несколько запусков-туров, если нет — ограничиться одним. Продолжительность фиксируемого полета — время с момента взлета модели до момента посадки или до того момента, когда она скроется из поля зрения. Участник, модель которого покажет нан-большее время пол ...
» Определение места самолета штилевой прокладкой пути При ведении визуальной ориентировки необходимо знать район предполагаемого местонахождения самолета, чтобы определить, какой участок карты сличить с местностью. Район предполагаемого местонахождения самолета может быть определен штилевой прокладкой пути, которая выполняется по записанным в бортовом журнале курсам, воздушной скорости и времени полета.
» Особенности самолетовождения в ночных условиях Условия самолетовождения ночью. Ночным называется полет, выполняемый в период от захода до восхода Солнца. Самолетовождение ночью характеризуется: 1. Ограниченными возможностями ведения визуальной ориентировки вследствие плохой видимости неосвещенных ориентиров, Которая зависит от высоты полета (табл; 21.3).
» План и карта Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудобны для практического использования в авиации. На небольших глобусах нельзя поместить все сведения, необходимые для самолетовождения. Большие глобусы неудобны в обращении. Поэтому подробное изображение земной поверхности ...
» Особенности самолетовождения при полетах в особых условиях - Особенности самолетовождения над горн ... К полетам в особых условиях относятся полеты над горной местностью, в зоне грозовой деятельности, над полярными районами Северного и Южного полушарий, пустынной и малоориентирной местностями, большими водными пространствами, на малых высотах и ночью. Самолетовождение в особых условиях навигационной обстановки выполняется по общим правилам с учетом некоторых особенностей, знание которых являетс ...
» Списывание девиации магнитных компасов Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвестна, практически нельзя, так как она может достигать больших значений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, элек ...
» Планирование занятий авиакружка Единой программы для авиакружка пионерского лагеря не существует. Да в этом и нет необходимости. Ведь объекты практической работы, ее последовательность определяются конкретными условиями — обеспечением материалами и инструментом, квалификацией руководителя и даже той местностью, где расположен пионерлагерь. Если кругом лес и нет возможности запускать свободнолетающие модели, то сл ...
» Использование РСБН-2 для захода на посадку РСБН-2 при заходе на посадку позволяет: 1. Производить «вписывание» самолета в установленную для данного аэродрома схему захода на посадку. 2. Осуществлять контроль полета по установленной схеме. 3. Выводить самолет в зону курсового радиомаяка.
» Органы управления, указатели системы «Трасса» и их назначение
Система «Трасса» имеет следующие органы управления и указатели: 1. Щиток управления системой. 2. Указатель угла сноса и путевой скорости. 3. Задатчик угла карты, 4. Счетчик координат. 5. Переключатель «ДИСС—АНУ». 6. Переключатель «Счетчик» («Вкл.—Выкл.»). 7. Задатчик ветра.
» Ошибки барометрических высотомеров Барометрические высотомеры имеют инструментальные, аэродинамические и методические ошибки. Инструментальные ошибки высотомера ΔН возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенства изготовления механизмов высотомера, износ деталей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый ...
» Выход на радиостанцию с нового заданного направления Выход на радиостанцию аэродрома с нового заданного направления осуществляется только по указанию диспетчера в целях обеспечения безопасности полета. Выходить на новую ЛЗП приходится при заходе на посадку по кратчайшему расстоянию, на, маршруте и в учебных полетах. Применяются следующие способы выхода на новую ЛЗП: а) с постоянным МК выхода; б) с постоянным КУР выхода.
» Модель конструкции авиамоделистов из г. Барановичи Модель конструкции авиамоделистов из г. Барановичи (рис. 41). Интересную модель из пенопласта разработали белорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бойцовку».
» Предполетная проверка КС-6 Для проверки КС в режиме «МК» необходимо: 1. Включить курсовую систему. 2. Установить на УШ и КМ-4 магнитное склонение, равное нулю. 3. Установить переключатель режимов работы на пульте управления в положение «МК». 4. Установить переключатель «Осн. — Зап.» в положение «Осн.». 5. Через 5 мин после включения КС нажать кнопку быстрого согласования и согласовать указатели, ко ...
» Назначение и принцип устройства навигационной линейки НЛ-10М Навигационная линейка НЛ-10М является счетным инструментом пилота и штурмана и предназначена для выполнения необходимых расчетов при подготовке к полету и в полете. Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить сложные математические действия над числами (умножение и деление) более простыми действиями — сложением и вычитанием отрезков шкал, выражающи ...
» Расчет времени и места начала снижения Выход на аэродром посадки выполняется на указанной диспетчером высоте круга или на заданном эшелоне. Время начала снижения рассчитывается с учетом заданной высоты выхода на аэродром.
Рис. 5.6. Расчет времени набора высоты
» Использование РПСН-2 в режиме «Препятствие» Режим «Препятствие» является основным режимом работы станции и предназначен для обнаружения наземных и воздушных препятствий и зон грозовой деятельности. Обнаружение и обход гроз. Грозовые зоны хорошо отражают радиоволны и наблюдаются на экране в виде ярко засвеченных пятен. Для их расшифровки и выявления в них участков наиболее опасных для полета в РПСН-2 имеется система контурной индикации, ко ...
» Штурманский контроль готовности экипажа к полету Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсутствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету контролируют штурманы авиаэскадрилий (авиаотрядов) и руководитель полетов. Флаг-штурман летного учебного заведения ...
» Скорость воздуха относительно лопасти ротора Рассмотрим скорость воздуха относительно элемента лопасти dr, отстоящего от оси ротора на расстоянии r; лопасть имеет угловое положение ψ и угол взмаха β. Взятый элемент кроме скоростей, имеет еще угловую скорость вращения Ω вокруг оси ротора и угловую скорость махового движения . Относительную скорость воздуха у элемента разложим на две составляющих: на радиальную, направленную по ...
» Шкалы навигационной линейки и их назначение Навигационная линейка имеет не равномерные шкалы, а логарифмические. При решении задач с помощью НЛ-10М используется одновременно две, а иногда и больше шкал, которые называются смежными.
» Основные правила самолетовождения - Порядок выполнения маршрутного полета Полеты самолетов гражданской авиации из одного пункта в другой выполняются по воздушным трассам, местным воздушным линиям, а вне трасс и воздушных линий — только по установленным маршрутам. В основе успешного выполнения полетов лежит строгое соблюдение установленных правил самолетовождения. Они обязывают экипаж самолета при выполнении любых полетов: 1) сохранять ориентировку в течение вс ...
» Автожир представляет собой летательную машину тяжелее воздуха Автожир представляет собой летательную машину тяжелее воздуха, С точки зрения конструкции автожир можно назвать самолетом с вращающейся несущей поверхностью, так как последней является авторотирующий (свободно вращающийся) винт-ротор большого диаметра и малого геометрического шага, расположенный над фюзеляжем так, что ось его нормальна (или близка к нормали) оси фюзеляжа. Авторотирует винт-ротор ...
» Ручка управления с фиксатором Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее освоить этот прием, применяют ручку управления, которая фиксируется на предплечье небольшим хомутом (рис. 67).
» Масштаб карты Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местности. Он показывает степень уменьшения линий на карте относительно соответствующих им линий на местности. Масштаб бывает численный и линейный.
» Порядок работы штурмана при выполнении полета по воздушной трассе Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводится контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных проверок.
» Выбор режима полета на самолетах с ГТД и расчет рубежа возврата - Особенности самолетовождения высот ... Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самолетов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:
Одной из важнейших задач, выполняемых экипажем самолета в полете, является сохранение ориентировки. Ее решение достигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях визуальную ориентировку не всегда можно применить, а определение места самолета с помощью радиотехнических средств требует времени, которым штурман не всегда располагает. Поэтому на современных самолетах устанавливается навигационный индикатор НИ-50БМ. Он является автономным прибором, предназначенным для непрерывного счисления пройденного самолетом пути и обеспечения сохранения ориентировки.
В комплект навигационного индикатора входят следующие основные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кроме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автоматически, а другая — вручную. Данные об истинной воздушной скорости и курсе полета вводятся в навигационный индикатор автоматически, а данные о ветре и положении осей условных координат относительно магнитного меридиана — вручную.
Навигационный индикатор может быть использован в полете следующими методами: 1. Методом контроля пройденного расстояния. 2. Методом контроля оставшегося расстояния (методом прихода стрелок к нулю). 3. Методом условных координат.
Для вывода самолета в заданный район необходимо: 1. Соединить прямой линией место самолета с пунктом, на который необходимо выйти. 2. Измерить по карте ЗМПУ и расстояние до заданного пункта (рис. 19.7). 3. Стрелки счетчика координат установить на нуль. 4. На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5. На задатчике ветра установить навигационное направление ветра и его скорость. 6. Развернуть самолет на МК = ЗМПУ и включить навигационный индикатор. 7. Подбором курса следования добиться, чтобы стрелка «В» удерживалась на нуле. 8. Момент выхода самолета на заданный пункт определить приходом стрелки «С» на отсчет, соответствующий расстоянию от исходной точки до заданного пункта.
При обходе гроз на маршруте полета НИ-50БМ может использоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).
При радиолокационной ориентировке для счисления пути по дальности может быть использован НИ-50БМ, для чего необходимо: 1. На подобранном курсе следования одним из возможных методов определить путевую скорость самолета. 2. На автомате курса и задатчике ветра установить МУК = ЗМПУ. 3. На задатчике ветра установить НВ=МУК, если W>V, или НВ=МУК±180°, если W 4. На счетчике координат стрелку «В» поставить па нуль, а стрелку «С» — на значение координаты, соответствующей месту самолета на ЛЗП в момент установки стрелок.
Для проверки НИ-50БМ перед полетом необходимо: 1. Включить электропитание прибора по переменному и постоянному току. 2. Включить и подготовить к работе ГИК. Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3. Установить на автомате курса и задатчике ветра МУК=МК самолета. 4. Ввести в задатчик ветра направление ветра, равное курсу, и скорость 120 км/ч. 5. Установить стрелки счетчика координат в нулевое положение. 6. Убедиться, что через 5 мин стрелка «С» счетчика координат покажет отсчет 10 км, а стрелка «В» — 0 км. 7. Изменить направление ветра на 90° от первоначального значения; установить стрелки счетчика координат на нуль и через 5 мин убедиться, что стрелка «В» покажет отсчет 10 км, а стрелка «С» — нуль. Отработка счетчиком координат указанных контрольных значений характеризует работоспособность навигационного индикатора.
Навигационная система «Трасса» предназначена для непрерывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямоугольной системе координат (дальность и линейное боковое уклонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является измеритель путевой скорости и угла сноса, использующий эффект Доплера. Поэтому эту систему обычно называют доплеровской автономной навигационной системой. Текущие значения угла сноса, путевой скорости и координаты места самолета непрерывно выдаются на указатели системы.
В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1. Доплеровский измеритель путевой скорости и угла сноса (ДИСС). 2. Автоматическое навигационное устройство (АНУ); его называют также навигационным вычислителем. 3. Датчик курса. 4. Датчик воздушной скорости. 5. Задатчик угла карты. 6. Указатель угла сноса и путевой скорости. 7. Счетчик координат.
Система «Трасса» имеет следующие органы управления и указатели: 1. Щиток управления системой. 2. Указатель угла сноса и путевой скорости. 3. Задатчик угла карты, 4. Счетчик координат. 5. Переключатель «ДИСС—АНУ». 6. Переключатель «Счетчик» («Вкл.—Выкл.»). 7. Задатчик ветра.
Система «Трасса» может быть использована в следующих режимах: «ДИСС», «Память» и автономный режим работы навигационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а) Перед вылетом: 1. Установить на щитке управления левый переключатель в положение «Выключено», а правый — в положение «Суша» (при полете над водной поверхностью — в положение «Море»). 2. Переключатель «ДИСС — АНУ» поставить в положение «ДИСС». 3. Установить переключатель «Счетчик» в положение «Выключено». 4. Установить стрелки счетчика координат в нулевое положение. 5. Установить на задатчике угла карты значение ОЗМПУ первого участка маршрута. 6. Включить АЗС с надписью «АНУ, Трасса». 7. Перед взлетом включить систему, для чего левый переключатель на щитке управления перевести в положение «Вкл.», при этом загорается зеленая сигнальная лампочка.
Проверка работы системы «Трасса» может быть полной (проводится техником РЭСОС один раз в течение трех суток с применением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется на двух точках шкалы указателя угла сноса и путевой скорости.
Наземные радиолокаторы относятся к смешанным автономным радиотехническим средствам и представляют собой стационарные или передвижные приемопередающие радиотехнические устройства, работающие в импульсном режиме в сантиметровом или метровом диапазоне волн. Они предназначены для контроля за движением самолетов и для решения задач самолетовождения. Наземные радиолокаторы с индикаторами кругового обзора позволяют службе движения: 1. Обнаруживать самолеты в контролируемом районе и определять их местонахождение. 2. Контролировать выдерживание экипажем установленного маршрута и точность выдерживания полета по расписанию. 3. Предупреждать опасные сближения самолетов и контролировать установленные интервалы между ними. 4. Обнаруживать районы очагов грузовой деятельности, определять направление и скорость их перемещения и передавать экипажам указания для обхода этих очагов. 5. Оказывать помощь экипажам при полетах в особых случаях (отказе в работе радиотехнических средств, потере ориентировки и др.)
Азимут и дальность до самолета определяются диспетчером по экрану индикатора, на котором самолет изображается в виде ярко светящейся метки. Азимут отсчитывается относительно северного направления истинного меридиана по шкале индикатора, которая имеет оцифровку от 0 до 360°. Наклонная дальность до самолета определяется на индикаторе по масштабным кольцам (рис. 16.1). Точность определения дальности — 0,5 — 2 км, азимута — 0,5 — 2°.
Место самолета при помощи наземного радиолокатора определяется по запросу экипажа или по усмотрению диспетчера. Для определения места самолета необходимо: 1) запросить у диспетчера место самолета; 2) получить от диспетчера азимут и дальность до самолета от наземного радиолокатора; 3) отложить на карте от радиолокатора полученный азимут и дальность на линии азимута.
При полете самолета от радиолокатора и на радиолокатор путевая скорость определяется в следующем порядке: 1. Запросить у диспетчера место самолета и заметить время. 2. Через 7—10 мин полета снова запросить место самолета и заметить время. 3. Определить пройденный самолетом путь как разность между полученными дальностями: Sпр =Д2—Д1 или Sпр=Д1—Д2 4. По пройденному расстоянию и времени полета рассчитать на НЛ-10М путевую скорость.
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осуществляется в следующем порядке: 1. Запросить у диспетчера место самолета. 2. Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм); БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между меридианом радиолокатора и меридианом, относительно которого определялся ЗМПУ, превышает установленные допуски точности самолетовождения, контроль пути по направлению по наземным радиолокаторам необходимо вести сравнением фактических азимутов с расчетными. Это позволит более точно определить необходимые навигационные элементы.
Контроль пути по направлению и дальности может осуществляться с помощью боковых радиолокаторов путем нанесения на карту места самолета по переданным на борт самолета азимуту и дальности. Такой контроль можно осуществить и без прокладки А и Д на карте, что сокращает время на получение необходимых данных контроля пути.
Вывод самолета на запасный аэродром с помощью наземного радиолокатора применяется в следующих случаях: 1) при потере ориентировки экипажем самолета; 2) при отказе радиокомпаса и невозможности использовать другие средства самолетовождения; 3) при полете в пункт, в котором не имеется радионавигационной точки.
Радиолокационная станция предупреждения столкновений и навигации РПСН-2 предназначена для обеспечения безопасности полетов в сложных метеоусловиях, в зонах с интенсивным воздушным движением, в районах с сильно пересеченной местностью путем предупреждения экипажа от столкновений с воздушными и наземными препятствиями. Кроме того, с помощью РПСН-2 можно решать следующие задачи самолетовождения: 1. Обнаруживать в передней полусфере наземные препятствия, зоны грозовой деятельности и встречные самолеты. 2. Вести обзор пролетаемой местности с целью ведения ориентировки. 3. Определять курсовой угол и дальность до наблюдаемых на экране ориентиров, очагов гроз и самолетов. 4. Определять место самолета, угол сноса и путевую скорость. 5. Вести контроль пути по направлению и дальности по боковым радиолокационным ориентирам.
Warning: Unknown: open(/var/lib/php/session/sess_ksuaaj9989qjbjuj42vql16nd6, O_RDWR) failed: Permission denied (13) in Unknown on line 0
Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/session) in Unknown on line 0