www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Использование радиолокации и навигации » Методы использования НИ-50БМ в полете
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Модель конструкции Ф. Ко­валенко
Модель конструкции Ф. Ко­валенко (рис. 39). Простую в изготовлении модель, с хо­рошей маневренностью разра­ботал этот минский авиамоде­лист. Используя в основном при ее изготовлении пенопласт марки ПС, удалось построить «бойцовку» массой около 250 г. Пенопластовые элементы вырезают проволокой-струной, нагреваемой электрическим то­ком (терморезаком), по ме­таллическим шаблонам. Их кромки, направляю ...

» Модель воздушного боя
Модели воздушного боя, или как их часто называют «бойцовки», несомненно, держат первенство среди всех кор­довых летательных аппара­тов. Обилие всевозможных схем и конструкторских ре­шений — наглядное подтверж­дение сказанному. Знакомство с этим классом авиационных моделей начнем с несложной «бойцовки», разработанной в пионерском лагере «Родник», где много лет автор был руководителем   авиакр ...

» Сравнение ротора автожира и крыла самолета
На фиг. 70 даны характеристика ротора, имеющего параметры А = 3, δ = 0,006, γ = 10, Θ = 2˚, k=1,0 и характеристика монопланного крыла, имеющего размах, равный диаметру ротора, и относительное удлинение λ = 6. Крыло имеет тот же профиль что и лопасть ротора автожира (Геттинген429),причем коэффициент подъемной силы крыла в целях сравнения отнесен к площади круга отметае ...

» Безопасная высота полета и ее расчет
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от ...

» Кордовая модель самолета «Юниор»
Кордовая модель самолета «Юниор» (рис. 32) разрабо­тана для первоначального обу­чения пилотированию моде­лей данной категории. Прежде чем приступить к изготовлению любой модели самолета, и к этой конкретно, надо вычер­тить ее рабочий чертеж. Работу над моделью можно начать с изготовления кры­ла — наиболее сложной дета­ли данного летательного аппа­рата. Крыло модели «Юниор» со­стоит из 10 нер ...

» Ракета— летательный аппа­рат тяжелее воздуха
Ракета— летательный аппа­рат тяжелее воздуха, подъем­ная сила которого возникает по принципу реактивного дви­жения. Этот принцип заклю­чается в отталкивании ра­кеты от массы струи газов, образованных при сгорании топлива и истекающих из двигателя. Своим рождением первые ракеты обязаны изобретению пороха. Но в те далекие вре­мена ракеты служили лишь для фейерверков. Потом они нашли применение ...

» Метательный планер «Старт»
Метательный планер «Старт» (рис. 22)  представляет собой дальнейшее   развитие   преды­дущих моделей. У него плав­ные очертания концевых час­тей   у   крыла,   стабилизатора и Киля. Основной материал — пенопласт ПС-4-40 и клей ПВА. Основа   фюзеляжа  —   две сосновые или липовые  рейки длиной   450   мм   и   сечением 6x2 мм. Между ними вклеи­вают пластину с наибольшим сечением 10X6 мм ...

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

» Модель вертолета чешских авиамоделистов
Модель вертолета чешских авиамоделистов (рис. 53) на­поминает настоящий гели­коптер. Фюзеляж заодно с килем вырезают из пластины пено­пласта толщиной 5 мм и по периметру фигуры окантовы­вают липовыми рейками сече­нием 5X1 мм. В качестве силовой балки используют сос­новую рейку сечением 4X3 мм и длиной 180 мм. С одного конца ее приклеивают подшип­ник винта, а с другого при­вязывают крючок из прово­ ...

» Навигационный треугольник скоростей, его элементы и их взаимозависимость
Самолет относительно воздушной массы перемещается с воз­душной скоростью в направлении своей продольной оси. Одно­временно под действием ветра он перемещается вместе с воздуш­ной массой в направлении и со скоростью ее движения. В резуль­тате движение самолета относительно земной поверхности будет происходить по равнодействующей, построенной на слагаемых скоростях самолета и ветра. Таким образом, п ...

» Курсы самолета
Курсом самолета называется угол, заключенный между се­верным направлением меридиана, проходящего через самолет, и продольной осью самолета. Курс отсчитывается в горизонтальной плоскости от северного направления меридиана до продольной оси самолета по ходу часовой стрелки от 0 до 360° (рис. 3. 4). Он показывает, куда направлена продольная ось самолета отно­сительно меридиана. Курс самолета может бы ...

» Цилиндрические проекции
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1)   нормальные — ось цилиндра совпадает с осью вращения Земли; 2)   поперечные — ось цилиндра    перпендикулярна к оси вращения Земли; 3)   кос ...

» Подготовка данных для применения КС-6
Для применения КС-6 в полете в различных режимах работы нужно предварительно на земле подготовить необходимые дан­ные. Для использования КС в режиме «ГПК» при подготовке к по­лету необходимо произвести дополнительную разметку маршрута для полета по ортодромии. В этом случае, кроме обычной проклад­ки и разметки маршрута, необходимо:

» Особенности самолетовождения на малых высотах
Условия самолетовождения на малых высотах. Полетами на малых высотах называются полеты, выполняемые на высотах до 600 м над рельефом местности. Такие полеты могут быть пред­намеренными (при выполнении различных видов работ авиацией специального применения), учебными (согласно программам лет­ной подготовки) и вынужденными (по различным причинам).

» Постройка шара-монгольфье­ра
Изготовление тепловых воз­душных шаров (монгольфье­ров)— увлекательное занятие в пионерском лагере. А запуски бумажных аэростатов украсят любой праздник или игру «Зар­ница». Работа над воздушным шаром посильна ребятам 9—10 лет, материал для его построй­ки — папиросная бумага. Еще понадобятся клей,нитки, каран­даш, линейка и ножницы. Постройка шара-монгольфье­ра. Работу начинают с ...

» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем
Радиотехнические средства среди других средств самолетово­ждения занимают одно из важнейших мест и находят самое ши­рокое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самоле­товождение. Радиотехнические средства самолетовождения по месту рас­положения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: при­в ...

» Парусная тележка
Парусная тележка (рис. 8) состоит из основания, ударника, замка и паруса. Основание— сосновая рейка длиной 150 мм и сечением 10X8 мм  На одном ее конце нитками с клеем при­вязывают скользящую петлю из скрепки и замок — П-образную пластину из алюминия шири­ной 8 мм. На другом конце рей­ки закрепляют вторую петлю. Один конец ударника, изготов­ленного из стальной проволоки диаметром 1,5 м ...

» Подведение итогов работы авиакружка
Итогом работы авиакружка за одну смену обычно является выс­тавка технического творчества или праздник малой авиации. Если в пионерском лагере несколько технических круж­ков, то устраивают общела­герную выставку. Праздник малой авиа­ции — своеобразный отчет авиамоделистов пионерского лагеря. В программу его про­ведения включают запуски зре­лищно интересных моделей. Вот как проходит такой праз ...

» Расчет вертикальной скорости снижения или набора высоты
В практике самолетовождения бывают случаи, требующие сме­ны эшелона полета. При необходимости диспетчер указывает эки­пажу время начала и окончания смены эшелона или задает учас­ток, на котором должно быть произведено снижение. На основа­нии указаний диспетчера штурман рассчитывает вертикальную скорость, обеспечивающую смену эшелона на заданном участке.

» Контроль пути по направлению при полете по ортодромии
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

» Кордовая модел
Из пяти категорий авиа­ционных моделей наиболее рас­пространенной можно при­знать категорию кордовых мо­делей. Кордовая модель — мо­дель летательного аппарата, летающая по кругу и управ­ляемая при помощи нерастягиваемых нитей или тросов (корд). Пилот, находящийся на земле, воздействуя на ор­ганы управления модели (ру­ли высоты) посредством корд, может заставить ее лететь горизонтально или вы ...

» Расчет истинной и приборной воздушной скорости в уме
В полете не всегда имеется возможность рассчитать воздуш­ную скорость с помощью навигационной линейки. Поэтому необ­ходимо уметь приближенно рассчитать скорость в уме. Кроме то­го, такой расчет позволяет контролировать правильность инстру­ментальных, вычислений и тем самым предотвращать в них гру­бые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к ...

» Сущность картографических проекций и их классификация
Способ изображения земной поверхности на плоскости назы­вается картографической проекцией. Существует много способов изображения земной поверхности на плоскости. Сущность любой картографической проекции состоит в том, что поверхность земного шара переносится сначала на глобус опреде­ленного размера, а затем с глобуса по намеченному способу на плоскость.

» Изображение ориентиров на экране индикатора
Для распознавания наблюдаемой на экране индикатора све­товой картины необходимо знать, как выглядят на экране различ­ные наземные объекты.

» Инструмент и материалы для авиакружка
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр ...

» О выборе площади и угла установки неподвижного крыла
Неподвижное крыло в автожире играет существенную роль, хотя в принципе и не является необходимым, так гак автожир мог бы летать и без неподвижного крыла - при наличии бокового управления, примером чего может служить французский автожир Лиоре-Оливье. Постановка неподвижного крыла выгодна прежде всего потому, что качество несущей системы, состоящей из ротора и крыла, выше, чем качество одного ротора ...

» Сущность визуальной ориентировки
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

» Метательные модели плане­ров
За последние несколько лет во многих странах (особенно в ЧССР) широкое распростра­нение получили метательные модели. Небольшие, размахом около полуметра и массой 25 — 30 г, они производят впечатление игрушек. Но их летные ка­чества лучше, чем у бумажных предшественников. Запускае­мые вверх резким броском руки, они способны на стремительный старт. Для них не предел 10 — 15.м высоты, наб ...

» Скорость воздуха относительно лопасти ротора
Рассмотрим скорость воздуха относительно элемента лопасти dr, отстоящего от оси ротора на расстоянии r; лопасть имеет угловое положение ψ и угол взмаха β. Взятый элемент кроме скоростей, имеет еще угловую скорость вращения Ω вокруг оси ротора и угловую скорость махового движения  . Относительную скорость воздуха у элемента разложим на две составляющих: на радиальную, направленную по ...

» Расчет показания широкой стрелки КУС для заданной истинной скорости
Приборная скорость для широкой стрелки КУС рассчитывает­ся по формуле V пр = V и-(± Δ V м)-(-Δ V сж)-(± Δ V а)-(± Δ V). Пример Н760пр= 6600 м; Vи = 500 км/ч; температура воздуха на высоте по­лета tн= —40°; ΔV= +5 км/ч; ΔVа= —18 км/ч; Δ Vсж= —5 км/ч. Определить приборную скорость для широкой стрелки КУС.

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Методы использования НИ-50БМ в полете
Самолетовождение » Использование радиолокации и навигации  |   Просмотров: 6638  
 
Навигационный индикатор может быть использован в полете следующими методами:
1.  Методом контроля пройденного расстояния.
2.  Методом  контроля   оставшегося расстояния   (методом   при­хода стрелок к нулю).
3.  Методом условных координат.
Использование навигационного индикатора методом контроля пройденного расстояния. Этот метод является основным. Он при­меняется при полете по трассе, когда штурману необходимо знать пройденное расстояние. В этом случае необходима полетная карта с нанесенным маршрутом. Карта готовится согласно НШС ГА и не требует какой-либо дополнительной подготовки. Для использования НИ-50БМ этим методом направление координатной оси С совмещают с ЛЗП. Магнитный угол карты бе­рется равным ЗМПУ. Стрелки счетчика координат устанавли­вают в нулевое положение. За начало отсчета координат намеча­ется любая точка маршрута (ИПМ, ППМ, КО).
При таком расположении осей координат стрелка «С» будет показывать пройденный самолетом путь, а стрелка «В» — сторо­ну и величину ЛБУ (рис. 19.3).
 
Методы использования НИ-50БМ в полете
 
Для использования НИ-50БМ методом контроля пройденно­го расстояния необходимо:
1.  На счетчике координат установить стрелки в нулевое поло­жение.
2.  На автомате  курса  и задатчике  ветра установить  МУК= ЗМПУ данного участка маршрута.
3.  На   задатчике  ветра   установить  направление   навигацион­ного ветра и его скорость.
4.  Включить индикатор над пунктом, который взят в качестве качала  отсчета  координат,  и убедиться в работе  индикатора по вращению контрольных индексов счетчика координат.
5.  В   тот  момент, когда   необходимо  определить место   само­лета,   отсчитать показания   стрелок счетчика   координат   и заме­тить время.
6.  Отметить на карте место самолета, для чего    отложить от пункта начала отсчета   координат  по ЛЗП  пройденное   расстоя­ние, отсчитанное по стрелке «С», и от полученной точки отложить ЛБУ, отсчитанное по стрелке «В».
7.  В момент пролета ППМ произвести установку данных для очередного участка маршрута,  приняв за  новое  начало отсчета координат пролетаемый ППМ.
Использование навигационного индикатора методом контроля оставшегося расстояния. Этот метод применяется, когда штурману необходимо знать оставшееся расстояние до ППМ. Для исполь­зования индикатора этим методом координатную ось С совмеща­ют с ЛЗП. Магнитный угол карты берется равным ЗМПУ (рис. 19.4). Стрелку «С» отводят ручкой влево от нуля на расстояние до ППМ. В этом случае стрелка «С» счетчика координат будет указывать оставшееся расстояние до ППМ, а стрелка «В» — сто­рону и величину ЛБУ.
Для использования НИ-50БМ методом контроля оставшегося расстояния необходимо:
1. На счетчике координат стрелку «С» отвести влево от нуля на деление 1000 км — Sэтапа (на оставшееся расстояние), а стрел­ку «В» установить на нуль.
2.  На автомате курса и задатчике  ветра   установить   МУК= ЗМПУ данного участка марш­рута.
3.  На задатчике ветра устано­вить направление навигационного ветра и его скорость.
4.   Включить    индикатор    над намеченным пунктом и убедиться в его работе.
5. В тот момент, когда необ­ходимо определить место самоле­та, отсчитать показания стрелок счетчика координат и заметить время.
6. Отметить на карте место самолета, для чего отложить от ППМ по ЛЗП оставшееся рас­стояние, которое определено по стрелке «С», и от полученной точ­ки отложить ЛБУ, указываемое стрелкой «В».
 7. Определить  момент выхода самолета на ППМ по приходу стрелок счетчика координат в нулевое положение.
8. В момент пролета ППМ произвести установку данных для следующего участка маршрута.
Использование навигационного индикатора методом условных координат. Этот метод можно применить при полете по трассе с большим количеством изломов. Он позволяет избежать частые установки угла карты.
 
Методы использования НИ-50БМ в полете
 
Для применения НИ-50БМ методом условных координат на бортовую карту заранее с помощью специального трафарета на­носится координатная сетка (рис. 19.5). Линии сетки проводятся цветной тушью через 2 см. Оцифровка линий выполняется в со­ответствии с масштабом карты. Для удобства пользования коорди­натной сеткой ось С располагают так, чтобы район полета нахо­дился в положительном секторе значений координат С и В. Реко­мендуется ось С располагать вдоль основного направления трассы. Магнитный угол карты определяют для среднего меридиана района полета, если магнитное склонение в данном районе из­меняется не более чем на 2°. При большем изменении магнитно­го склонения МУК определяется для каждого участка трассы.
Для использования   НИ-50БМ  методом   условных   координат необходимо:
1.  На счетчике координат установить координаты  ИПМ,  от­считанные по подготовленной карте.
2.  На автомате курса и задатчике ветра установить магнит­ный угол карты района полета.
3.  На задатчике ветра установить направление навигационного ветра и его скорость.
4.  Включить   индикатор   над  пунктом,   координаты   которого установлены на счетчике координат.
5.  В тот момент, когда необходимо определить место самоле­та, отсчитать  показание стрелок  счетчика и записать  время  от­счета и значения координат в бортовой журнал.
6.  По  заранее  подготовленной   карте  отложить  отсчитанные координаты и в точке пересечения координатных линий треуголь­ником отметить место самолета с указанием  времени  его опре­деления.
Вследствие того, что навигационный индикатор имеет погреш­ности, место самолета определяется с точностью 3—5% прой­денного самолетом пути от точки начала счисления. Ошибки счи­сления во многом зависят от связи навигационного индикатора с датчиком курса. Когда навигационный индикатор связан с маг­нитным компасом, от которого в индикатор поступает МК, то ошибки счисления возрастают, так как полет в этом случае про­исходит по локсодромии, а счисление ведется индикатором в ор-тодромической прямоугольной системе координат. При связи на­вигационного индикатора с курсовой системой или с ДАК-ДБ-5, когда в индикатор выдается ортодромический курс, точность счи­сления пути повышается.
Для предотвращения накопления больших ошибок счисления пути рекомендуется периодически производить корректировку по­казаний стрелок счетчика координат, т. е. устанавливать их на показания, соответствующие фактическому месту самолета, оп­ределенному визуально, с помощью самолетного радиолокатора или по данным, полученным от службы движения.
Установка ветра на задатчике ветра должна производиться каждый раз после его определения. Если ветер на задатчике вет­ра не установлен, то навигационный индикатор будет выдавать координаты штилевого места самолета.
4. Определение ветра
Для определения ветра с помощью НИ-50БМ необходимо:
1.  На счетчике координат установить стрелки в нулевое поло­жение.
2.  На автомате курса установить МУК=ЗМПУ данного уча­стка маршрута.
3.  На задатчике ветра установить скорость ветра, равную нулю.
4.  При  пролете  опознанного  ориентира включить  индикатор.
5.  Через 15—20 мин полета визуально, бортовым  радиолока­тором или с помощью РСБН-2 точно определить место самолета, отметить его на карте и записать время.
6.  К моменту определения места самолета отсчитать показа­ния счетчика координат и по отсчитанным координатам нанести да карту штилевое место самолета (рис. 19.6).
 
Методы использования НИ-50БМ в полете
 
7.  Соединить на карте отметки штилевого и фактического ме­ста самолета прямой линией и при помощи транспортира изме­рить истинное  направление метеорологического  ветра  как угол, заключенный между северным направлением истинного меридиа­на, проходящего через отметку фактического  места самолета, и вектором ветра.
8.  Определить магнитное направление метеорологического вет­ра по формуле: δ = δи—(±ΔМ).
9.  Измерить масштабной линейкой расстояние   между   отмет­ками штилевого и фактического места самолета. Эта прямая бу­дет вектором ветра за время полета от точки начала счисления до момента отсчета координат штилевого места самолета.
Скорость ветра рассчитывается на НЛ-10М или по формуле: U=S/t.
Для определения скорости ветра с помощью НЛ-10М. необхо­димо время полета, взятое по шкале 2, подвести под расстояние между отметками штилевого и фактического места самолета по шкале 1 и против треугольного индекса шкалы 2 прочитать по шкале 1 скорость ветра в километрах в час.

Распечатать ..

 
Другие новости по теме:

  • Предполетная проверка НИ-50БМ
  • Использование НИ-50БМ для счисления пути
  • Использование НИ-50БМ при обходе гроз
  • Вывод самолета в заданный район
  • Основные сведения о НИ-50БМ


  • Rambler's Top100
    © 2009