www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Строим сами летающие модели » Модели планеров » Модель планера А-1 «Пионер»
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Перевод футов в метры и обратно
Футы переводятся в метры, а метры в футы по формулам: Hм = Hфуты:3,28; Hфуты = Нм·3,28. Чтобы перевести футы в метры, на НЛ-10М необходимо индекс ФУТЫ шкалы 14 установить по шкале 15 на данное число футов, а против деления 100 или 1000 шкалы 14 отсчитать по шкале 15 число метров рис. (4.10).

» Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) =   =   =111 км. 1ґ дуги меридиана (экватора) =   = 1,852 км = 1852 м.

» Курсы самолета девиация магнитных компасов
Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине. Условно пр ...

» Кордовая модель самолета с электродвигателем
Предлагаем изготовить не­сложную кордовую модель са­молета с электродвигателем (рис. 45). Из куска упаковочного пенопласта толщиной 15 мм вы­резают крыло. Если такого куска не оказалось, его склеи­вают из отдельных элементов. Цельное крыло обязатель­но облегчают, вырезая в обеих консолях широкие отверстия, и укрепляют нервюрами. Во внешнем конце крыла заклеи­вают свинцовый грузик мас­сой 5 г, пр ...

» Резиномоторная модель са­молета «Малютка»
Резиномоторная модель са­молета «Малютка» (рис. 27). Эту схематическую модель са­молета    сконструировал М. С. Степаненко, один из ветеранов советского авиамо­делизма. Главное ее достоин­ство — простота изготовления. Необходимый для постройки материал: сосновые рейки, не­много стальной проволоки диа­метром 0,6 мм, папиросная и чертежная бумага, рези­новая нить сечением 1X 1 мм длиной около ...

» Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы снижения и захода на посад ...
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.

» Модель планера А-1 «Пионер»
Модель планера А-1 «Пио­нер» (рис. 26). Данный планер относится к категории спортив­ных моделей и существенно отличается от описанных ранее. С ним можно выступать на соревнованиях почти всех ран­гов и выполнять нормативы для присвоения спортивных разрядов. Разумеется, изготов­ление такой модели под силу лишь авиамоделистам, имею­щим опыт конструирования и определенные навыки в ра­боте. Для построй ...

» Пилотажный электролет
Тем, кому работа над моде­лями с электродвигателем по­кажется интересной, предла­гаем построить «пилотажку» (рис. 47), разработанную Ю. Павловым. Эта модель несколько сложнее описанных ранее, но и возможности ее шире, да и энерговооружен­ность выше. Подкупает и внеш­няя форма модели, напоми­нающая настоящий самолет. Крыло склеивают из плас­тин упаковочного пенопласта. Можно также вырезать его из ц ...

» Схематическая модель пла­нера разработана ал­ма-атинскими авиамоделиста­ми
Схематическая модель пла­нера (рис. 23) разработана ал­ма-атинскими авиамоделиста­ми. Хорошие летные качества этой «схематички» заставили конструкторов малой авиации оборудовать миниатюрный па­ритель фитильным приспособ­лением для принудительной по­садки. Постройку такой «схематич­ки» начинают с крыла. Прежде всего заготовки кромок изго­тавливают с помощью спе­циально изготовленного при­способлени ...

» Предполетная проверка НИ-50БМ
Для проверки НИ-50БМ перед полетом необходимо: 1.  Включить электропитание   прибора   по  переменному  и  по­стоянному току. 2.  Включить и подготовить к работе ГИК.    Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3.  Установить на автомате курса и задатчике ветра МУК=МК самолета. 4.  Ввести в задатчик ветра направлен ...

» Перевод морских и английских миль в километры и обратно
Перевод морских (ММ) и английских (AM) миль в километры и обратно производится по формулам: Sкм= S (ММ)·1,852;    Sкм = S(AM)·1,6;      S (ММ) = Sкм :1,852; S(AM) = Sкм:1,6.  Чтобы перевести морские или английские мили в километры, на НЛ-10М необходимо деление 100 или 1000 шкалы 14 установить на число морских или английских миль по шкале 15 и соответ­ственно против индекса ММ или AM .отсчитать по ...

» Пилотажный змей «Акробат»
Пилотажный змей «Акробат» (рис. 10) сконструировал моск­вич А. Милорадов. Основа змея — дельтавидное крыло. От классического крыла Рогалло «Акробат» отличается удлинен­ной центральной рейкой. Это сделано для повышения про­дольной устойчивости. Угол между боковыми рейками-лон­жеронами составляет 156° и является оптимальным. Попе­речную устойчивость обеспечи­вают приподнятые относитель­но цент ...

» Расчет истинной и приборной воздушной скорости в уме
В полете не всегда имеется возможность рассчитать воздуш­ную скорость с помощью навигационной линейки. Поэтому необ­ходимо уметь приближенно рассчитать скорость в уме. Кроме то­го, такой расчет позволяет контролировать правильность инстру­ментальных, вычислений и тем самым предотвращать в них гру­бые ошибки. Для приближенного расчета воздушной скорости в уме нужно запомнить методические поправки к ...

» Радионавигационные элементы - Общая характеристика и виды радиотехнических систем
Радиотехнические средства среди других средств самолетово­ждения занимают одно из важнейших мест и находят самое ши­рокое применение. В комплексе с другими средствами они при умелом использовании обеспечивают надежное и точное самоле­товождение. Радиотехнические средства самолетовождения по месту рас­положения делятся на наземные и самолетные. К наземным радиотехническим средствам относятся: при­в ...

» Устройство управляемой ракеты
Несмотря на большое раз­нообразие, все ракеты имеют много общего в своем устрой­стве. Основными частями управляемой ракеты являются полезный груз, корпус, двига­тель, бортовая аппаратура си­стемы управления, органы управления и источники энер­гии. Полезный груз — объект для проведения иссле­дований или других работ, размещается в головном от­секе и прикрывается головным обтекателем. Корпус р ...

» Инструмент и материалы для авиакружка
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр ...

» Уравнение нулевого крутящего момента
Средний крутящий момент ротора равен:  

» Режимы работы, органы управления, указатели КС-6 и их назначение
В зависимости от решаемых задач и условий полета курсовая система  может  работать: 1) в   режиме гирополукомпаса   «ГПК»; 2)   в   режиме   магнитной   коррекции   «МК»; 3)   в режиме астрономической коррекции «АК».

» Полеты по ортодромии - Необходимость полета по ортодромии
В гражданской авиации имеются самолеты, обладающие боль­шой дальностью полета. На таких Самолетах совершаются регу­лярные полеты по трансконтинентальным и межконтинентальным авиалиниям. Эти самолеты имеют специальное оборудование, поз­воляющее выполнять полеты по ортодромии. Необходимость пере­хода к полетам по ортодромии вызвана требованием повышения точности самолетовождения.

» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира
Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...

» Теория ротора
Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом пот ...

» Модель конструкции авиа­моделистов из г. Барановичи
Модель конструкции авиа­моделистов из г.  Барановичи (рис. 41). Интересную модель из пенопласта разработали бе­лорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бой­цовку».

» Основные радионавигационные элементы
Основными радионавигационными элементами при использо­вании радиокомпаса являются: курсовой угол радиостанции (КУР); отсчет радиокомпаса (ОРК); радиодевиация (Δр); пеленг радиостанции (ПР); пеленг самолета (ПС).

» Выход на конечный пункт маршрута
Выход на КПМ должен быть выполнен точно по месту и вре­мени. Это исключает необходимость выполнения маневра для поис­ка аэродрома посадки и обеспечивает безопасность самолетовожде­ния. Выход на КПМ осуществляется: 1)  визуально или по бортовому радиолокатору; 2)  по компасу и расчетному времени; 3) при помощи радионавигационных, радиолокационных и светотехнических средств, расположенных в пункте н ...

» Штурманский контроль готовности экипажа к полету
Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсут­ствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету кон­тролируют штурманы авиаэскадрилий (авиаотрядов) и руководи­тель полетов. Флаг-штурман летного учебного заведения ...

» Навигационные задачи на маневрирование - Определение времени последнего срока вылета
Дневные срочные вылеты с аэродромов, не оборудованных для ночных полетов, разрешается начинать за 30 мин до восхода Солн­ца и заканчивать полет за 30 мин до наступления темноты в рав­нинной и холмистой местности и не позднее захода Солнца в гор­ной местности. В районах севернее широты 60° полеты разрешается заканчивать за 30 мин до наступления темноты.

» Состав оборудования системы «Трасса» и принцип работы навигационного вычислителя
В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1.  Доплеровский   измеритель  путевой   скорости   и   угла сноса (ДИСС). 2.  Автоматическое  навигационное  устройство   (АНУ);   его на­зывают также навигационным вычислителем. 3.  Датчик курса. 4.  Датчик воздушной скорости. 5.  Задатчик угла карты. 6.  Указатель угла сноса и путевой скорости. 7. ...

» Петля Нестерова
Задача участников в этом соревнова нии — заставить модель вы­полнить петлю Нестерова Судьи, наблюдая за полетами сбоку, оценивают эту фигуру выполненную каждой моделью, в очках. Так, четкая и ровная петля, похожая на окруж ность, оценивается в 5 очков. петля с зависанием, вытянутая,— в 4 очка и т. д. Участник, набравший наибольшую сумму очков за три полета, признается победителем.

» Планирование и вертикальный спуск автожира
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

» Точность посадки
Цель этих соревнований — посадить модель в заранее обозначенное место. На расстоянии 5—6 м от стартовой линии размечают «аэродром». Это может быть круг диаметром около 1 м или лист газеты. Каждый участник после тренировочных запусков совершает зачетный полет Если после первого тура у нескольких участников модели приземлились точно на «аэродром», для определения победителя линию старта ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Модель планера А-1 «Пионер»
Строим сами летающие модели » Модели планеров  |   Просмотров: 11134  
 
Модель планера А-1 «Пио­нер» (рис. 26). Данный планер относится к категории спортив­ных моделей и существенно отличается от описанных ранее. С ним можно выступать на соревнованиях почти всех ран­гов и выполнять нормативы для присвоения спортивных разрядов. Разумеется, изготов­ление такой модели под силу лишь авиамоделистам, имею­щим опыт конструирования и определенные навыки в ра­боте. Для постройки планера А-1 применяется дефицитная древесина — бальза. Но это не должно отпугивать желающих ее сделать. Бальзу можно заменить липой, ольхой или кедром, для нервюр приме­нить шпон толщиной 0,4— 0,6 мм, уменьшить сечение кромок. Для некоторых эле­ментов использовать пено­пласт.
Прежде чем приступить к изготовлению модели, нужно выполнить ее рабочий чер­теж и подготовить шаблон профилей крыла и стабили­затора.
 
Модель планера А-1 «Пионер»
 
Рис. 26. Модель планера А-1 «Пионер»
 
Носовую часть фюзеляжа из­готовляют из липовой пластины толщиной 10 мм. Вырезают по контуру, делают внутри отверстия и приклеивают к пластине две липовые рейки сечением 10X2 мм. С вклеенными че­тырьмя распорками они образу­ют хвостовую балку. На свобод­ном ее конце закрепляют сосно­вый брусок, в который на эпо­ксидной смоле вставляют крю­чок из проволоки ОВС диамет­ром 1 мм. Площадку для креп­ления стабилизатора делают из липы толщиной 3 мм. В каче­стве упора на ней используют липовую рейку сечением 4Х Х4 мм. Крючок для буксиров­ки модели из проволоки ОВС диаметром 2 мм вклеивают в носовую часть фюзеляжа на расстоянии 206 мм от переднего края. Боковые стороны фюзе­ляжа оклеивают фанерой тол­щиной 1 мм в носовой части и бальзовым шпоном — в хво­стовой.
Штыри для стыковки поло­вин крыла изготовляют из стальной проволоки ОВС: пе­редний — диаметром 2,6 мм, задний — диаметром 2 мм. Их подвергают закалке,  а затем
туго вставляют в гнезда носо­вой части фюзеляжа.
Киль, материалом для кото­рого служит бальзовая пласти­на толщиной 2,5 мм, врезан в фюзеляж. Руль поворота на петлях из лески навешен к задней кромке киля.
Собранный фюзеляж обра­батывают наждачной бумагой и оклеивают длинноволокни­стой бумагой, после чего по­крывают четыре раза эмалитом. Масса фюзеляжа — 151 г.
Крыло — наборное, из двух половин, каждая из которых включает 16 основных нервюр (из бальзы) и четыре силовых (из фанеры толщиной 1 мм). Порядок изготовления нервюр таков: вырезают из фанеры 10 заготовок для нервюр, слегка склеивают их и тщательно обрабатывают в тисках напиль­ником, который держат парал­лельно верхней плоскости тис­ков, иначе можно исказить профиль нервюр. После это­го сверлят в них два отверстия под штыри.
Затем берут две нервюры, обрисовывают их по конту­ру чернилами, Приклеивают к бальзовому бруску размером 120X20X80 мм  и обрабатыва­ют его ножом. Кривизну профиля и правильность обработки контролируют линейкой, делают вырезы для лонжеронов и пе­редней-кромки. Полученную за­готовку разрезают вдоль на нервюры толщиной 1,6—2 мм по линейке острозаточенным скальпелем. Дальнейшую до­водку нервюр до толщины 1,5 мм делают наждачной бума­гой, наклеенной на брусок. В заключение нервюры проэма-личивают.
Для лонжеронов крыла ис­пользуют сосновые рейки сече­нием 4X2 мм для перед­ней кромки — ре йку из липы се­чением 4X3 мм. 3аднюю кром­ку .выстругивают из бальзы се­чением 15X3 мм, вырезы для нервюр делают скальпелем на глубину 4 мм. Используя чер­теж, размечают карандашом места на лонжеронах и перед­ней кромке, где будут крепиться нервюры.
Устанавливаю нервюры на лонжеронах, прикрепляют пе­реднюю и заднюю кромки, места соединений промазыва­ют клеем. Законцовку делают из бальзы. Заднюю кромку крыла, пока еще прямоуголь­ную, состругивают рубанком и обрабатываю наждачной бумагой, чтобы она имела треугольное сечение и явля­лась продолжением профиля нервюры. Лобовую часть кры­ла на ширину 10 мм заши­вают бальзовым I шпоном тол­щиной 2 мм. Корневую часть обеих половин (в месте силовых нервюр) усиливают баль­зовым шпоном.
Каждую из половин крыла собирают отдельно. Надо быть внимательным и не сделать их на одну сторону. В месте, где должен быть угол поперечного V, крыло разрезают и при помо­щи уголков из 3-миллиметровой фанеры склеивают. Места сое­динений кромок усиливают уголками целлулоида, угловую нервюру вырезают из липы. Собранное крыло тщательно зачищают наждачной бумагой, наклеенной на деревянный брусок.
Конструкция стабилизатора аналогична конструкции крыла. Нервюры (длина 18 мм) выре­заны из бальзового шпона тол­щиной 1 мм. Передняя и задняя кромки — бальзовые, их сече­ние соответственно 8X6 и 10Х Х2,5 мм. Лонжероны выстру­ганы из липовых реек сечением 2,5Х 1,5 мм, законцовки — из бальзы. Крючки из проволоки ОВС диаметром 1 мм привя­зывают нитками с клеем к цен­тральной липовой нервюре, среднюю часть усиливают баль­зовым шпоном.
Стыки нервюр с кромками и лонжеронами промазывают клеем, кладут на ровную по­верхность и сверху помещают груз: стабилизатор получится ровным, без перекосов. После сборки неровности горизонталь­ного оперения зачищают наж­дачной бумагой.
Обычно модель начинают об­тягивать с фюзеляжа. Фюзеляж данной модели можно не обтя­гивать бумагой, а покрыть нитрокраской или бесцветным лаком (эмалитом). Крыло и стабилизатор оклеивают длин-
новолокнистой бумагой, пред­варительно окрашенной ани­линовым красителем и разгла­женной. Полосы бумаги долж­ны быть на 30—40 мм шире оклеиваемой поверхности. Пе­ред обтяжкой каркас прома­зывают жидким эмалитом.
Начинают оклеивать крыло снизу. Накладывают полосу бумаги и промазывают жидким клеем по нервюрам, лонжеро­нам и кромкам. Особенно тща­тельно надо обтягивать при сильно вогнутом профиле. Не­обходимо приглаживать бумагу по нервюрам, добиваясь ее при­клеивания. Обтянутое крыло слегка прошкуривают по кром­кам и покрывают двумя слоями эмалита. Просохшую обтяжку зачищают мелкой наждачной бумагой и дважды покрывают жидким эмалитом. Готовое кры­ло устанавливают в стапель на 5—7 дней.
Аналогично обтягивают ста­билизатор, но покрывают его тремя слоями жидкого нитро­лака.
Масса крыла данной модели 58 г, а стабилизатора 12 г. По­летная масса модели состав­ляет 221 г.
Готовую модель собирают, то есть устанавливают крыло при помощи штырей на фюзеля­же, стабилизатор привязывают резиновой нитью к площадке на хвостовой балке фюзеляжа. Собранную модель центруют. Для этого в камеру носовой части фюзеляжа загружают дробь или мелко нарезанные кусочки свинца. Центр тя­жести этой модели должен находиться на расстоянии 38— 40 мм от задней кромки крыла.
Первые регулировочные по­леты следует проводить в без­ветренную погоду. Перед за­пуском тщательно проверяют, нет ли перекосов крыла и хвостового оперения.
Регулируют модель путем подбора угла установки стаби­лизатора. Берут модель за фюзеляж под крылом и энер­гичным, но не резким толчком пускают. Она должна проле­теть по прямой 20—25 м. Если модель поворачивает вправо или влево, отклоняют руль поворота киля). При кабрирова­нии модели немного опускают заднюю кромку стабилизатора, подрезая хвостовую стойку фю­зеляжа. В случае резкого сни­жения модели поднимают зад­нюю кромку стабилизатора, помещая под нее тонкие про­кладки из плотной бумаги. Не рекомендуется. регулировать модель изменением центра тя­жести.
Отрегулировав модель на планирование с рук, присту­пают к запускам на леере (ры­боловная леска диаметром 0,5—0,6 мм). Длина леера по условиям соревнований не дол­жна превышать 50 м. Замеря­емый леер предварительно рас­тягивают с силой 20 Н. Один его конец привязывают к проволоч­ному кольцу, надеваемому на буксировочный крючок моде­ли, другой крепят на катушке. Для первых запусков жела­тельно размотать леер на 10— 12 м. После Нескольких поле­тов на коротком леере модель запускают на длинном леере, внимательно наблюдая за взле­том. При недостаточном угле поперечного V или чрезмерной эффективности   киля   модель,
находясь на леере, меняет на­правление полета — рыскает. Такой взлет опасен и не да­ет возможности запустить мо­дель на всю длину леера. До­биться хорошего взлета можно, увеличив угол поперечного V крыла или уменьшив площадь киля (последнее лучше).
Характерные недостатки по­лета после отделения леера — волнообразное движение, или спиральная неустой­чивость. Причина такого по­лета, а иногда и преждевремен­ного срыва с леера, заключа­ется чаще всего в том, что бук­сировочный крючок располо­жен слишком близко к центру тяжести модели. Этот недоста­ток устраняют, перенося крю­чок вперед.
Иногда после отделения ле­ера модель входит в вираж и не выходит из него до посадки. Попытки устранять вираж из­менением углов атаки крыла или стабилизатора приводят к появлению такого же виража, но противоположного направ­ления. В большинстве случа­ев подобные виражи проис­ходят с увеличенной скоростью снижения. Наиболее яркое про­явление этих признаков со­провождается заметным уве­личением скорости, уменьше­нием радиуса виража, бы­строй потерей высоты и опусканием носовой части модели во время виража. Это сви­детельствует о спиральной не­устойчивости. Чтобы решить, каким образом улучшить ус­тойчивость, необходимо попы­таться разобраться в проис-ходивших во время полета яв­лениях, пользуясь сведениями из аэродинамики. В большин-
стве случаев спиральную не­устойчивость можно устранить следующими способами:
увеличением боковой пло­щади носовой части фюзеля­жа — установкой гребня;
уменьшением площади киля;
увеличением угла попереч­ного V крыла модели;
перемещением центра тяжес-тн назад, что требует затем но­вой регулировки модели на пла­нирование.
К нежелательным явлениям, выявляющимся при запусках модели, относится чрезмерная путевая устойчивость. Ее признак — прямолинейный ус­тойчивый полет даже с неболь­шим боковым ветром. Сделать модель менее устойчивой мож­но, уменьшив угол крыла или увеличив площадь вертикально­го оперения, а также перемес­тив центр тяжести вперед, уве­личивая груз в носовой части фюзеляжа.

Распечатать ..

 
Другие новости по теме:

  • Модель планера «Малыш»
  • Резиномоторная модель са­молета класса В-1
  • Кордовая учебно-тренировочная модель самолета
  • Метательный планер «Старт»
  • Модель воздушного боя


  • Rambler's Top100
    © 2009